
Galois Theory: On Algebraic Expressions 
Research Question: What are the implications of Galois theory on the algebraic 

expressions of the roots of unity and the roots of polynomials?
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Abstract 
The scope of Galois theory encompasses both group theory and field theory. It 
characterizes polynomial equations using the Galois groups of field extensions, which may 
be utilized to show certain properties of algebraic numbers and their algebraic expressions 
involving rational numbers and the algebraic operations (+, −, ×, ÷, 𝑛th-roots). In this 
essay, I investigate how Galois theory can be used to determine the existence and the types 
of roots needed in the algebraic expressions of the roots of unity, i.e. 𝜁𝑛 ≔ e2𝜋𝑖/𝑛 where 𝑛 ∈
ℤ+. Then I show that the solvability of a polynomial’s Galois group is a necessary and 
sufficient condition for the existence of algebraic expressions for its roots, hence 
concluding that polynomial equations of degree 5 or higher are not in general solvable by 
radicals. 
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Preliminaries 
To facilitate discussion, I will use terminologies and employ certain notations common in 
Galois theory repeatedly; their definitions may be found in Appendix A. Lemmas or other 
minor assumptions not important to the main discussion are either proven in Appendix B or 
cited with a reference. 

In this essay, I work only with groups of finite order, algebraic number fields, i.e. fields 𝐹 
such that [𝐹 ∶ ℚ] is finite1, and unless otherwise specified, polynomials have distinct 
roots2. 

Lemma 1. Let 𝐸/𝐹 be a field extension and 𝜙 ∈ Gal(𝐸/𝐹). If 𝑓 ∈ 𝐹[𝑥] is a polynomial of 
which 𝑥 ∈ 𝐹 is a root, then so is 𝜙(𝑥). 

Lemma 2. Let 𝐸 = 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚) be obtained as a series of simple extensions of 𝐹: 
(1) If 𝑚 = 1, and 𝑓 is the minimal polynomial of 𝛼 ≔ 𝛼1 over 𝐹, then [𝐸 ∶ 𝐹] = deg 𝑓; 
(2) For every 𝑧 ∈ 𝐸, there exists 𝑔 ∈ 𝐹[𝑥1, 𝑥2, ⋯ , 𝑥𝑚] such that 𝑧 = 𝑔(𝛼1, 𝛼2, ⋯ , 𝛼𝑚); 
(3) Every 𝜙 ∈ Gal(𝐸/𝐹) is uniquely determined by 𝜙(𝛼𝑖) for all 1 ≤ 𝑖 ≤ 𝑚. 

Lemma 3. Let 𝑀/𝐹 be a field extension: 
(1) If 𝑀/𝐹 is Galois, any irreducible polynomial in 𝐹[𝑥] with one root in 𝑀 splits over 𝑀; 
(2) If 𝑀/𝐹 is Galois, then |Gal(𝑀/𝐹)| = [𝑀 ∶ 𝐹]; 
(3) 𝑀/𝐹 is Galois if and only if 𝑀 is the splitting field of some 𝑓 ∈ 𝐹[𝑥] over 𝐹. 

Lemma 4 (Fundamental Theorem of Galois Theory (FTGT)). If 𝑀/𝐹 is a Galois extension, 
then there exists a one-to-one correspondence from the subgroups 𝐻 ⊆ Gal(𝑀/𝐹) to the 
intermediate subfields 𝐹 ⊆ 𝐾 ⊆ 𝑀, given by: 

𝐻 → 𝑀𝐻 or 𝐾 → Gal(𝑀/𝐾) 

Lemma 5. Let 𝐹 ⊆ 𝐾 ⊆ 𝑀 where 𝑀/𝐹 is Galois, and define 𝐺 ≔ Gal(𝑀/𝐹) and 𝑁 ≔
Gal(𝑀/𝐾): 
(1) 𝐾/𝐹 is Galois if and only if 𝑁 ⊴ 𝐺; 
(2) If 𝐾/𝐹 is Galois, Gal(𝐾/𝐹) ≅ 𝐺/𝑁. 

Lemma 6. Let 𝐺 be a group: 
(1) (Lagrange’s Theorem) Every subgroup 𝐻 ⊆ 𝐺 has order dividing |𝐺|; 
(2) If 𝑁 ⊴ 𝐺, then |𝐺/𝑁| = |𝐺|/|𝑁|.  

 
1 Therefore ℚ is the smallest field I will consider. 
2 Minimal polynomials have distinct roots, see Proposition 26. 
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Section 1: Roots of Unity 
By Euler’s formula, 𝜁𝑛 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛). These values for certain 𝑛 are well-
known: 

{
 
 

 
 sin 2𝜋/12 = 1/2

sin 2𝜋/8 = √2/2

sin 2𝜋/6 = √3/2
sin 2𝜋/4 = 1

,

{
 
 

 
 cos 2𝜋/12 = √3/2

cos 2𝜋/8 = √2/2
cos 2𝜋/6 = 1/2
cos 2𝜋/4 = 0

 

Using these values, the algebraic expressions of the sine and cosine of other angles, which 
are the sums and differences of these angles, may be written accordingly using the 
compound angle formulae. But the algebraic expressions of other angles, such as 
sin(2𝜋/360) cannot be derived using this method3; is it, then, still possible to express 𝜁360 
and other 𝜁𝑛’s algebraically, and if so, what of its properties may be derived using Galois 
theory? 

Section 1.1: Taking 𝒏-th Roots  

I will build an algebraic expression using the following method: start with ℚ ≔ 𝐹0, the field 
of rational numbers. At each step of the process, adjoin to 𝐹𝑖  the 𝑛𝑖th-root of some 𝑎 ∈ 𝐹𝑖  to 
obtain 𝐹𝑖+1. If the target value is contained in some 𝐹𝑚, then it has an algebraic expression. 
Thus, the condition for an algebraic expression is equivalent to requiring a field 𝐹𝑚 
containing the target value to be a radical extension of ℚ, i.e. a series of simple radical 
extensions of ℚ. 

If I instead start with a field 𝐹 (dubbed the ‘base field’) already containing all sufficient 
roots of unity to reach the final field 𝐸, i.e. 

𝐹 ≔ 𝐹0 ⊆ 𝐹1 ⊆ 𝐹2 ⊆ ⋯ ⊆ 𝐹𝑚 = 𝐸 (1)  
then each 𝐹𝑖+1/𝐹𝑖 is also Kummer and therefore Galois by Lemma 3, for then 𝐹𝑖+1 =

𝐹𝑖( √𝑎
𝑛𝑖

) will be a splitting field of 𝑥𝑛𝑖 − 𝑎 over 𝐹𝑖  with roots 𝜁𝑛𝑖
𝑘 √𝑎
𝑛𝑖

∈ 𝐹𝑖+1 for 0 ≤ 𝑘 ≤ 𝑛𝑖 − 1. 
This allows for an easy characterization of its Galois group, since by Lemma 2, every 

automorphism is completely determined by where it sends √𝑎
𝑛𝑖  to, i.e. 𝜁𝑛𝑖

𝑘 √𝑎
𝑛𝑖  for some 𝑘 by 

Lemma 1, thus each automorphism corresponds to an integer 𝑘 between 0 and 𝑛𝑖 − 1. 

Proposition 7. Define 𝛼 ≔ √𝑎
𝑛  where 𝑎 ∈ 𝐹, so that 𝐹(𝛼)/𝐹 is simple radical, and 𝐺 ≔

Gal(𝐹(𝛼)/𝐹): 
(1) If 𝜁𝑛 ∉ 𝐹, then 𝐺 ≅ {𝑒}; 
(2) Otherwise, let 𝜙𝑘 ∈ 𝐺 be the unique automorphism such that 𝜙𝑘(𝛼) = 𝜁𝑛𝑘𝛼, and 𝑞 the 

 
3 Converting to degrees, the angles stated above are all multiples of 3. Thus 2𝜋/360 = 1° is not reachable 
using the compound angle formulae. 
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smallest non-zero integer for which 𝜙𝑞 ∈ 𝐺. Then 𝐺 = ⟨𝜙𝑞⟩ ≅ ℤ𝑛/𝑞, which is non-trivial 
unless the extension itself is trivial. 

Proof (Statement 1). By Lemma 1, every automorphism must send 𝛼 to itself for it is the 
only root of 𝑥𝑛 − 𝑎, i.e. 𝜙(𝛼) = 𝛼, which completely determines the full automorphism by 
Lemma 2. Hence |𝐺| = 1, and 𝐺 ≅ {𝑒}. 

Proof (Statement 2). If 𝜁𝑛 ∈ 𝐹, then 𝐹(𝛼)/𝐹 is Galois; by Lemma 3, then, |𝐺| =
[𝐹(𝛼) ∶ 𝐹] ≠ 1 if the extension is not trivial, therefore 𝐺 is not trivial. Now, for any 𝑘 such 
that 𝜙𝑘 ∈ 𝐺, 

𝜙𝑘(𝛼) = 𝜁𝑛
𝑘𝛼 = 𝜁𝑛

𝑝𝑞+𝑟𝛼 
where 𝑝, 𝑟 ∈ ℤ and 0 ≤ 𝑟 < 𝑞 by the division algorithm. Since 𝜙𝑞 ∈ 𝐺, so is any 𝜙−𝑝𝑞, the 

inverse of 𝜙𝑝𝑞 = (𝜙𝑞)
𝑝

. Then 

(𝜙−𝑝𝑞 ∘ 𝜙𝑘)(𝛼) = 𝜙−𝑝𝑞(𝜁𝑛
𝑝𝑞+𝑟𝛼) = 𝜁𝑛

𝑝𝑞+𝑟𝜙−𝑝𝑞(𝛼) = 𝜁𝑛
𝑟𝛼 

∴ 𝜙−𝑝𝑞 ∘ 𝜙𝑘 = 𝜙𝑟 ∈ 𝐺 
by closure, but since 𝑟 < 𝑞 which is already the smallest non-zero integer for which the 
equation holds true, 𝑟 = 0, and 

(𝜙−𝑝𝑞 ∘ 𝜙𝑘)(𝛼) = 𝛼 

∴ 𝜙𝑘(𝛼) = 𝜙𝑝𝑞(𝛼) 

Hence 𝜙𝑘 = (𝜙𝑞)
𝑝

 and therefore 𝐺 = ⟨𝜙𝑞⟩. Furthermore, 

𝜙𝑞
𝑛/𝑞(𝛼) = (𝜁𝑛

𝑞)
𝑛/𝑞
𝛼 = 𝛼 

Thus (𝜙𝑞)
𝑛/𝑞

 is the identity, and by definition, 𝐺 ≅ ℤ𝑛/𝑞. QED. 

Proposition 7 allows concluding the cyclicality of the Galois group of an extension given the 
fact that it is simple radical. In particular, the Galois group is non-trivial if there exists the 
corresponding root of unity in the base field, so that the extension is a Kummer extension. 
In fact, the converse is also true: if the Galois group of an extension is cyclic and the base 
field contains the appropriate root of unity, then the extension must be Kummer. That is, 

Proposition 8. Let 𝐸/𝐹 be a Galois extension where 𝜁𝑛 ∈ 𝐹. Then if 
𝐺 ≔ Gal(𝐸/𝐹) ≅ ℤ𝑛 

then 𝐸 = 𝐹(√𝑎𝑛 ) where 𝑎 ∈ 𝐹, so that 𝐸/𝐹 is a Kummer extension. 

Proof. Let 𝐺 = ⟨𝜙⟩ and 𝛽 ∈ 𝐸. Consider 

𝛼 = ∑𝜁𝑛
−𝑖𝜙𝑖(𝛽)

𝑛−1

𝑖=0

 

Hence 
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𝜙(𝛼) = ∑𝜁𝑛
−𝑖𝜙𝑖+1(𝛽)

𝑛−1

𝑖=0

= 𝜁𝑛∑𝜁𝑛
−(𝑖+1)𝜙𝑖+1(𝛽)

𝑛−1

𝑖=0

= 𝜁𝑛∑𝜁𝑛
−𝑖𝜙𝑖(𝛽)

𝑛−1

𝑖=0

= 𝜁𝑛𝛼 (2) 

∴ 𝜙(𝛼𝑛) = [𝜙(𝛼)]𝑛 = (𝜁𝑛𝛼)
𝑛 = 𝛼𝑛 

which means 𝑎 ≔ 𝛼𝑛 ∈ 𝐹 since 𝐸/𝐹 is Galois. Then 
𝛼 = 𝜁𝑛

𝑖 √𝑎
𝑛  

where 0 ≤ 𝑖 ≤ 𝑛 − 1, and therefore, 𝐸 contains 𝐹(𝛼) = 𝐹(𝜁𝑛𝑖 √𝑎
𝑛
) = 𝐹(√𝑎

𝑛
), and 𝐹(𝛼)/𝐹 is 

Kummer and Galois by Lemma 3 for 𝐹(𝛼) is the splitting field of 𝑥𝑛 − 𝑎 ∈ 𝐹[𝑥]. But since 
𝐹 ⊆ 𝐹(𝛼) ⊆ 𝐸 

I can invoke FTGT and Lemma 5 to write 
𝐺 ⊵ 𝐻 ⊵ {𝑒} 

and use Proposition 7 (where 𝑞 = 1 due to (2)) to conclude that 
Gal(𝐹(𝛼)/𝐹) ≅ 𝐺/𝐻 ≅ ℤ𝑛 

But 𝐺 ≅ ℤ𝑛, which implies that 𝐻 ≅ {𝑒}, for |𝐻| = |𝐺|/|𝐺/𝐻| = 1. Invoking FTGT again 
concludes that 𝐸 = 𝐹(𝛼) = 𝐹(√𝑎𝑛 ). QED. 

Naively speaking, then, if it can be shown that all the 𝜁𝑛’s have algebraic expressions, then 
there exists a base field 𝐹 containing all sufficient 𝜁𝑛’s that is obtained as a radical 
extension of ℚ; and if there is a field 𝐸 containing the targeted value satisfying (1) where 
each Gal(𝐹𝑖+1/𝐹𝑖) is cyclic, then 𝐸 is a radical extension of 𝐹 and therefore ℚ, implying that 
the target value has an algebraic expression. 

However, this approach is recursive if the target values are the roots of unity, as it assumes 
the truth for 𝜁𝑛 in the base field 𝐹. 

Section 1.2: Cyclotomic Extensions 

Perhaps a good starting point will be the Galois group of a cyclotomic extension, as this 
may be helpful in utilizing Proposition 8 to show that the individual extensions are Kummer 
and therefore the radicality of the whole extension: 

Proposition 9. Let 𝐹(𝜁𝑛)/𝐹 be a cyclotomic extension. Then 𝐺 ≔ Gal(𝐹(𝜁𝑛)/𝐹) ≅ ℤ𝑛
×. 

Proof. By Lemma 2, every 𝑧 ∈ 𝐹(𝜁𝑛) can be expressed as 

𝑧 =∑𝑐𝑖𝜁𝑛
𝑖

𝑚

𝑖=0

 

where 𝑐𝑖 ∈ 𝐹 and 𝑚 = deg 𝑓 − 1 where 𝑓 is the minimal polynomial of 𝜁𝑛 over 𝐹. Now let 
𝜙𝑘 ∶ 𝐹(𝜁𝑛) → 𝐹(𝜁𝑛) be a homomorphism fixing 𝐹 such that 𝜙𝑘(𝜁𝑛) = 𝜁𝑛𝑘. It is an 
automorphism and is in 𝐺 if and only if 𝜙𝑘 is bijective, if and only if there exists an inverse 
𝜙𝑙 = 𝜙𝑘

−1, where  
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(𝜙𝑙 ∘ 𝜙𝑘)(𝑧) =∑𝑐𝑖(𝜙𝑙 ∘ 𝜙𝑘)(𝜁𝑛
𝑖 )

𝑚

𝑖=0

=∑𝑐𝑖𝜙𝑙(𝜁𝑛
𝑖𝑘)

𝑚

𝑖=0

=∑𝑐𝑖𝜁𝑛
𝑖𝑘𝑙

𝑚

𝑖=0

=∑𝑐𝑖𝜁𝑛
𝑖

𝑚

𝑖=0

= 𝑧 

which implies 𝑘𝑙 ≡ 1 (mod 𝑛), if and only if 𝑘 is coprime to 𝑛 and therefore in ℤ𝑛×. This 
means that 

𝜙𝑘 ∈ 𝐺 ⇔ 𝑘 ∈ ℤ𝑛
× 

Henceforth, the mapping 𝜎 ∶ 𝐺 → ℤ𝑛× defined by 𝜎(𝜙𝑘) = 𝑘 is bijective, and for 𝜙𝑗 , 𝜙𝑘 ∈ 𝐺, 

(𝜙𝑗 ∘ 𝜙𝑘)(𝜁𝑛) = 𝜙𝑗(𝜁𝑛
𝑘) = [𝜙𝑗(𝜁𝑛)]

𝑘
= 𝜁𝑛

𝑗𝑘
= 𝜙𝑗𝑘(𝜁𝑛) 

∴ 𝜎(𝜙𝑗 ∘ 𝜙𝑘) = 𝜎(𝜙𝑗𝑘) = 𝑗𝑘 = 𝜎(𝜙𝑗)𝜎(𝜙𝑘) 
thus 𝜎 is an isomorphism, and 𝐺 ≅ ℤ𝑛×. QED. 

It is rather tempting to try and prove that ℚ(𝜁𝑛)/ℚ is radical. This is true for some 𝑛, for 
example, ℚ(𝜁3)/ℚ is Galois since 𝜁3 can be expressed as 

𝜁3 = −
1

2
+
√3

2
𝑖 = −

1

2
+
√−3

2
4 

which includes only a square root, implying that 𝜁3 ∈ ℚ(√−3). However, in general, this 
claim is false; for example, there exists a cube root in the algebraic expression for 𝜁7, so 
achieving the field ℚ(𝜁7) from ℚ requires adjoining a cube root √𝑎3  to some intermediate 
field in the process. But this would imply that ℚ(𝜁7)/ℚ is not Galois, for 𝜁3 ∉ ℚ(𝜁7) implies 
that Gal(ℚ(𝜁7)/ℚ) must fix √𝑎3 ∉ ℚ (since the other roots of 𝑥3 − 𝑎, i.e. 𝜁3√𝑎

3  and 𝜁32√𝑎
3  are 

not in ℚ(𝜁7)), which means ℚ is not the fixed field of the Galois group. However, ℚ(𝜁7) is 
the splitting field of 𝑥7 − 1 over ℚ, so by Lemma 3, it is Galois, hence contradiction. 

Fortunately, this issue can be resolved by first adjoining 𝜁3 and then 𝜁7. Luckily, as 
previously established, a field containing 𝜁3 can itself be obtained as a radical extension of 
ℚ, and it remains only to prove that ℚ(𝜁3, 𝜁7)/ℚ(𝜁3) is radical. Generalizing this to any 𝜁𝑛, it 
seems likely that the expression for 𝜁𝑛 only requires 𝑝-th roots with 𝑝 < 𝑛, which will then 
only require the radicality of a field containing 𝜁𝑝 before actually adjoining the root of unity 
𝜁𝑛. If this is the case, then one may proceed by strong induction on 𝑛 as follows. 

Claim that, for any arbitrary 𝐹, there exists a radical extension 𝐸/𝐹 so that 𝜁𝑛 ∈ 𝐸 for 
positive 𝑛. Here I also claim that 𝐸/𝐹 can be expressed as a series of Kummer extensions. 
The base case 𝑛 = 1 is trivial, since 𝜁1 = 1 ∈ ℚ is the smallest possible field. No extensions 
are needed, and the claim holds vacuously. 

For the inductive step, consider the decomposition series of ℤ𝑛×: 
{𝑒} ≔ 𝐻0 ⊲ 𝐻1 ⊲ 𝐻2 ⊲ ⋯ ⊲ 𝐻𝑚 ≔ ℤ𝑛

× (3) 
 

4 Solving 𝑥3 − 1 = (𝑥 − 1)(𝑥2 + 𝑥 + 1) = 0 shows that the roots are 𝑥 = 1 and 𝑥 = (−1 ± 𝑖√3)/2 (by the 
quadratic formula), and since 𝜁3 = e2𝜋𝑖/3 lies in the upper half of the complex plane, it must be chosen that 
𝜁3 = (−1 + 𝑖√3)/2. 
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and conjecture that if every 
𝐻𝑖+1/𝐻𝑖 ≅ ℤ𝑑𝑖 , 𝑑𝑖 < 𝑛 (4) 

then there exists �̃� containing all 𝜁𝑑𝑖’s such that �̃�/𝐹 is radical and composed of a series of 
Kummer extensions by the inductive hypothesis, obtained by extending to a field containing 
𝜁𝑑𝑖  for each 𝑖. Let the desired field containing 𝜁𝑛 be 

𝐸 = �̃�(𝜁𝑛) 
so that Gal(𝐸/𝐹) ≅ ℤ𝑛× by Proposition 9 (if 𝜁𝑛 is already in �̃� then the proof is done), which 
has a decomposition series given by (3). Since, by Lemma 3, 𝐸/�̃� is Galois for 𝐸 is the 
splitting field of 𝑥𝑛 − 1 over �̃�, one may invoke FTGT to obtain (1) (with �̃�’s replacing 𝐹’s), 
where each �̃�𝑖+1/�̃�𝑖  is Galois by Lemma 5. Since 

Gal(𝐹𝑖+1/𝐹𝑖) ≅ 𝐻𝑖+1/𝐻𝑖 ≅ ℤ𝑑𝑖  

and 𝜁𝑑𝑖 ∈ �̃� ⊆ �̃�𝑖, by Proposition 8, then, each �̃�𝑖+1/�̃�𝑖  is Kummer, and 𝐸/�̃� is radical and 
composed of a series of Kummer extensions, therefore so is 𝐸/𝐹, proving the claim, for 
𝜁𝑛 ∈ 𝐸. Then apply the claim to 𝐹 = ℚ to obtain the desired result.  

The verification of the claim relies on the truth of the conjecture in (4), i.e. the factors of ℤ𝑛× 
must not only be cyclic, but of an order less than 𝑛. Since the factors of a group are a 
property of the group itself and not the field it represents, in the following section, it 
suffices to limit my attention to group theory to prove the cyclicality of its factors. 

Section 1.3: Composition Factors of Abelian Groups 

I need only prove that ℤ𝑛× factors into cyclic groups of order less than 𝑛 for verifying the 
existence of algebraic expressions for 𝜁𝑛. As a general observation: 

Proposition 10. Every group has a simple cyclic subgroup. 

Proof. For any group 𝐺 and arbitrary 𝑔 ∈ 𝐺, by closure, 𝐺 contains the set 
𝐻 ≔ {𝑔𝑘|𝑘 ≥ 1} 

which must be finite, so there exists 𝑖 < 𝑗 where 𝑔𝑖 = 𝑔𝑗, implying that 𝑔𝑗−𝑖 = 𝑒. Then by 
definition, 𝐺 has as its subgroup 𝐻 = ⟨𝑔⟩ which is cyclic. For further reduction to a simple 
subgroup, pick a prime 𝑝 dividing |𝐻| and notice that ⟨𝑔|𝐻|/𝑝⟩ ≅ ℤ𝑝, which is simple5 and a 
subgroup of 𝐺. QED. 

This is especially convenient as any subgroup 𝑁 of an abelian group 𝐺 is normal, since for 
𝑔 ∈ 𝐺 and 𝑛 ∈ 𝑁, 

𝑔𝑛𝑔−1 = 𝑔𝑔−1𝑛 = 𝑛 ∈ 𝑁 
implying that 𝑁 ⊴ 𝐺. Hence ℤ𝑝 is a simple and normal subgroup of 𝐺, and therefore a factor 

 
5 Sheng, G. (2022). On the Classification of Finite Simple Groups. Massachusetts Institute of Technology, p. 5–
6. https://math.mit.edu/research/highschool/primes/circle/documents/2022/Gracie.pdf 

https://math.mit.edu/research/highschool/primes/circle/documents/2022/Gracie.pdf
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of 𝐺. Any abelian group, then, must have at least one cyclic factor. This applies to ℤ𝑛× as it is 
abelian due to the commutativity of multiplication.  

What about the remaining factors? One may conjecture that, in general, analogous to 
natural numbers, factors of any group 𝐺 that are not factors of some 𝑁 ⊴ 𝐺 are the factors 
of 𝐺/𝑁. To see this, first notice that if 𝑁 ⊆ 𝐻 ⊆ 𝐺, then 

𝐻 ⊴ 𝐺 ⇒ 𝐻/𝑁 ⊴ 𝐺/𝑁 
since 

(𝑔𝑁)(ℎ𝑁)(𝑔−1𝑁) = (𝑔ℎ𝑔−1)𝑁 ∈ 𝐻/𝑁 
Hence, from a partially refined decomposition series of 𝐺: 

{𝑒} ⊴ 𝑁 ≔ 𝐻0 ⊲ 𝐻1 ⊲ 𝐻2 ⊲ ⋯ ⊲ 𝐻𝑚 ≔ 𝐺 
where 𝐻𝑖+1/𝐻𝑖 is simple, I can write 

{𝑒} ≅ 𝐻0/𝑁 ⊲ 𝐻1/𝑁 ⊲ 𝐻2/𝑁 ⊲ ⋯ ⊲ 𝐻𝑚/𝑁 = 𝐺/𝑁 (5) 
for 𝑁 ⊴ 𝐻𝑖  because 𝑁 ⊴ 𝐺 and therefore ℎ𝑖𝑛ℎ𝑖

−1 ∈ 𝑁 where ℎ𝑖 ∈ 𝐻𝑖 ⊆ 𝐺. This looks like a 
full decomposition series for 𝐺/𝑁 with factors (𝐻𝑖+1/𝑁)/(𝐻𝑖/𝑁). In fact, 

Proposition 11 (Third Isomorphism Theorem). If 𝑁 ⊆ 𝐻 ⊆ 𝐺 and both 𝑁 and 𝐻 are normal 
in 𝐺, 

𝐺/𝐻 ≅ (𝐺/𝑁)/(𝐻/𝑁) 

Proof. Consider the map 𝜎 ∶ 𝐺/𝐻 → (𝐺/𝑁)/(𝐻/𝑁) defined by 
𝜎(𝑔𝐻) = (𝑔𝑁)(𝐻/𝑁) 

First, check if 𝜎 is well-defined. Let some coset be expressed in two ways 𝑔𝐻 = 𝑔′𝐻 where 
𝑔′ = 𝑔ℎ for some ℎ ∈ 𝐻. Then 

𝜎(𝑔′𝐻) = (𝑔′𝑁)(𝐻/𝑁) = ((𝑔ℎ)𝑁)(𝐻/𝑁) 

= ((𝑔𝑁)(ℎ𝑁))(𝐻/𝑁) 
= (𝑔𝑁)(𝐻/𝑁) = 𝜎(𝑔𝐻) 

where the penultimate equality holds since ℎ𝑁 ∈ 𝐻/𝑁. Now, since every element in 
(𝐺/𝑁)/(𝐻/𝑁) is of the form (𝑔𝑁)(𝐻/𝑁) where 𝑔 ∈ 𝐺 and is thus mapped from 𝑔𝐻, 𝜎 is 
surjective; and since both groups have the same order, i.e. |𝐺|/|𝐻|, 𝜎 is bijective. For 
satisfying the homomorphism property, 

𝜎((𝑔𝐻)(𝑔′𝐻)) = 𝜎((𝑔𝑔′)𝐻) 

= ((𝑔𝑔′)𝑁)(𝐻/𝑁) = ((𝑔𝑁)(𝑔′𝑁))(𝐻/𝑁) 

= ((𝑔𝑁)(𝐻/𝑁))((𝑔′𝑁)(𝐻/𝑁)) 
= 𝜎(𝑔𝐻)𝜎(𝑔′𝐻) 

where 𝑔, 𝑔′ ∈ 𝐺. Thus, 𝜎 is an isomorphism and the two groups are isomorphic. QED. 

Thus, the individual quotient subgroups in (5) are isomorphic to 𝐻𝑖+1/𝐻𝑖, which by 
construction are simple; thus (5) is indeed a full decomposition series, and the various 



10 
 

𝐻𝑖+1/𝐻𝑖, the factors of 𝐺 that are not factors of 𝑁, are indeed factors of 𝐺/𝑁. I can now 
proceed with the main proof of the conjecture (4): 

Proposition 12. Let 𝐺 be abelian. Then it factors into cyclic groups of prime order 
according to the prime factorization of 𝑛 ≔ |𝐺|. That is, if 

𝑛 = 𝑝1
𝑘1𝑝2

𝑘2⋯𝑝𝑚
𝑘𝑚  

then the factors of 𝐺 include 𝑘1 copies of ℤ𝑝1, 𝑘2 copies of ℤ𝑝2… and 𝑘𝑚 copies of ℤ𝑝𝑚. 

Proof. Proceed with strong induction on 𝑛. For the base case 𝑛 = 1, I have 𝐺 = {𝑒} which 
has no factors, therefore the claim holds vacuously. For the inductive step, by Proposition 
10, there exists ℤ𝑝 ⊴ 𝐺 for some prime 𝑝. As argued above, the factors of 𝐺 excluding ℤ𝑝 
are the factors of 𝐺/ℤ𝑝. Its order may be written in terms of the prime factorization of 𝑛 =
|𝐺|, where without loss of generality, 

𝑝|𝐺/ℤ𝑝| = 𝑛 = 𝑝
𝑘0𝑞1

𝑘1𝑞2
𝑘2⋯𝑞𝑚

𝑘𝑚 = 𝑝 ⋅ (𝑝𝑘0−1𝑞1
𝑘1𝑞2

𝑘2⋯𝑞𝑚
𝑘𝑚) 

Notice that |𝐺/ℤ𝑝| = 𝑛/𝑝 < 𝑛, and it is abelian, since for 𝑔ℤ𝑝, 𝑔′ℤ𝑝 ∈ 𝐺/ℤ𝑝, 

(𝑔ℤ𝑝)(𝑔
′ℤ𝑝) = (𝑔𝑔

′)ℤ𝑝 = (𝑔
′𝑔)ℤ𝑝 = (𝑔

′ℤ𝑝)(𝑔ℤ𝑝) 
where the second equality results since 𝐺 is abelian. Thus, I can apply the inductive 
hypothesis to conclude that all its factors are cyclic according to the prime factorization of 
|𝐺/ℤ𝑝|. Comparing 𝐺 to 𝐺/ℤ𝑝, the prime factorization of 𝑛 has an additional 𝑝 that matches 
the additional factor of ℤ𝑝 for 𝐺. Hence, all factors of 𝐺 are cyclic according to the prime 
factorization of 𝑛, hence proven. QED. 

Proposition 12 confirms that ℤ𝑛× has cyclic factors. Their orders also divide 𝑛 by Lemma 6, 
so they must be smaller than 𝑛, proving the conjecture (4). Hence, as argued in Section 1.2: 

Theorem 13. For any positive integer 𝑛 and field 𝐹, there exists radical 𝐸/𝐹 which can be 
expressed as a series of Kummer extensions such that 𝜁𝑛 ∈ 𝐸. 
(Partial) Corollary. Every 𝜁𝑛 has an algebraic expression6. 

Section 1.4: The Algebraic Expressions for 𝜻𝒏 

In the preceding sections I have guaranteed the existence of algebraic expressions for all 
roots of unity. However, their specific expressions themselves cannot be obtained from 
Galois theory, and elementary methods must be used to a certain extent. However, some 
information may be extracted, specifically, the types of 𝑛th roots present in the algebraic 
expression, without resorting to elementary methods. 

Consider that for instance the algebraic expression for 𝜁23 be investigated. To do so I would 
need the smallest radical extension of ℚ that contains 𝜁23; a natural first candidate is the 

 
6 Obtained by setting 𝐹 = ℚ. 
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field ℚ(𝜁23), but as argued in Section 1.2 it is not necessarily a radical extension of ℚ, 
because it may contain roots whose corresponding root of unity is not in ℚ(𝜁23). However, 
instead of starting from the roots in the algebraic expression for 𝜁23 (which I am trying to 
find the properties of), I can utilize Section 1.3 to prove that ℚ(𝜁23)/ℚ is not radical as 
follows. 

Observe that Gal(ℚ(𝜁23)/ℚ) ≅ ℤ23×  by Proposition 9. Since |ℤ23× | = 22 (since 23 is prime 
and every number below 23 is necessarily coprime to it), by Proposition 12, it has factors ℤ2 
and ℤ11 and a decomposition series like 

{𝑒} ⊲ ℤ11 ⊲ ℤ23
×  

which I may invoke FTGT upon to get 
ℚ(𝜁23) ⊃ 𝐾 ⊃ ℚ 

for some intermediate subfield 𝐾. Notice that Gal(𝐾/ℚ) ≅ ℤ27, so 𝐾 cannot contain 𝜁11, 
otherwise ℚ ⊂ ℚ(𝜁11) ⊆ 𝐾, and invoking FTGT would mean that Gal(ℚ(𝜁11)/ℚ) ≅ ℤ11×  is a 
quotient subgroup of Gal(𝐾/ℚ) ≅ ℤ2, which is false8. Now suppose for contradiction that 
ℚ(𝜁23) is a radical extension of 𝐾. Since there are no intermediate subfields, it must be the 
case that 

ℚ(𝜁23) = 𝐾(√𝑎
𝑝
) 

for some 𝑎 ∈ 𝐾 and 𝑝 prime. I need to show that 𝐺 ≔ Gal(𝐾(√𝑎
𝑝
)/𝐾) cannot be ℤ11. By 

Proposition 7, 𝐺 is either ℤ𝑝 or {𝑒} depending on if 𝜁𝑝 ∈ 𝐾, which means that I need only 
consider the case 𝑝 = 11. But 𝜁11 ∉ 𝐾 implies 𝐺 ≅ {𝑒}, hence contradiction9, and ℚ(𝜁23)/ℚ 
is not radical. 

In line with the pattern for 𝜁7 in Section 1.2, the main issue is the absence of the root of 
unity 𝜁11 in the base field, so instead I first extend to a field containing 𝜁11. However, 
applying the same argument reveals that I must extend to a field containing 𝜁5 first, before 
adjoining 𝜁11 and 𝜁23. Luckily, ℚ(𝜁5) is a radical extension of ℚ, since the factors of ℤ5× 
include only two copies of ℤ2, and the corresponding root of unity 𝜁2 = −1 is already in ℚ. 
Consequently, to build up to a field containing 𝜁23, I must perform cyclotomic extensions in 
the sequence: 

ℚ ⊂ ℚ(𝜁5) ⊂ ℚ(𝜁5, 𝜁11) ⊂ ℚ(𝜁5, 𝜁11, 𝜁23) 
where the Galois groups of the individual extensions are the groups ℤ5×, ℤ11× , and ℤ23×  
respectively. Applying FTGT on the decomposition series for each of them and employing 
Proposition 8 gives: 

 
7 Gal(ℚ(𝜁23)/𝐾) ≅ ℤ11/{𝑒} ≅ ℤ11, so Gal(𝐾/ℚ) is isomorphic to the other factor of ℤ23× , i.e. ℤ2. 
8 ℤ2 is simple, thus its only quotient subgroup is ℤ2. 
9 A similar argument for the other decomposition series of ℤ23×  ({𝑒} ⊲ ℤ2 ⊲ ℤ23× ) can be constructed. 
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{

ℤ5
× ⊳ ℤ2 ⊳ {𝑒}

ℤ11
× ⊳ ℤ5 ⊳ {𝑒}

ℤ23
× ⊳ ℤ11 ⊳ {𝑒}

FTGT
→   {

ℚ ⊂ ℚ(√𝑎) ⊂ ℚ(√𝑎, √𝑏) = ℚ(𝜁5)

ℚ(𝜁5) ⊂ ℚ(𝜁5, √𝑐) ⊂ ℚ(𝜁5, √𝑐, √𝑑
5
) = ℚ(𝜁5, 𝜁11)

ℚ(𝜁5, 𝜁11) ⊂ ℚ(𝜁5, 𝜁11, √𝑒) ⊂ ℚ(𝜁5, 𝜁11, √𝑒, √𝑓
11 ) = ℚ(𝜁5, 𝜁11, 𝜁23)

(6) 

which explicitly illustrates the radicality of ℚ(𝜁5, 𝜁11, 𝜁23). As seen, obtaining this field 
requires adjoining 4 square roots, 1 fifth root, and 1 eleventh root, hence the same roots 
are present in the (most ‘simplified’ version of the) algebraic expression for 𝜁23. 

It should be noted that composite roots are taken as separate prime roots, e.g. a fourth root 
is considered two square roots, a sixth root is considered a square root and a cube root, 
etc. This means that it may be the case that 𝜁23 is expressible in a single 24 ⋅ 5 ⋅ 11 = 880-
th root, although unlikely. Additionally, two roots are considered distinct if the expression 
under it is also distinct, not merely how many times it appears in an expression. For 

example, the expression √1 + √5 + √4 − √5 is said to contain three square roots, not four, 

for √5 is repeated twice. 

This method, of obtaining the smallest radical extension of ℚ containing the desired 𝜁𝑛, 
makes use of the property of the multiplicative groups and avoids making explicit reference 
to the algebraic expression of the root of unity. This is advantageous as it allows for 
generalization to any integer 𝑛; the only obstacle is the determination of factors of any 
multiplicative group. 

Proposition 12 and Lemma 6 conclude that all factors are cyclic of order dividing |ℤ𝑛×|. This 
value, by definition, is the number of integers less than 𝑛 coprime to 𝑛, which is given by the 
Euler totient function, 𝜙(𝑛). Thus, 

|ℤ𝑛
×| = 𝜙(𝑛) 

and from the prime factorization of 𝜙(𝑛), then, I can directly read off its cyclic factors as in 
the statement for Proposition 12.  

Using the procedure for 𝜁23 as a reference, for general 𝑛, consider each prime factor of 
𝜙(𝑛) not equal to 2. Investigate its totient, and for each of those primes not equal to 2, 
investigate its totient again… Repeat this process until all ‘final’ factors are equal to 2. For 
each number, then, I can obtain a ‘tree’: 
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Fig. 1: Example of a ‘tree’, 𝑛 = 1633 

As in Fig. 1, each ‘level’ of prime factors is highlighted in red, and building up to a field 
containing the desired 𝜁𝑛 requires adjoining to the base field ℚ the various prime roots of 
unity (ignoring factors of 2) on each level in order from lowest to highest, as illustrated by 
the sequence of 𝐹𝑖’s on the left, where the final field (in this case 𝐹3) contains the desired 
root of unity. The radicality of 𝐹3/ℚ may be explicitly illustrated in a similar fashion to (6).  

To know the kinds of roots present in the algebraic expressions for 𝜁𝑛, notice that at each 
step of the cyclotomic extension in the adjoining process, its Galois group with the series 
(3) has factors satisfying (4), which means invoking FTGT and Proposition 8 concludes that 
the whole extension is composed of Kummer extensions each obtained by adjoining 𝑑𝑖-th 
roots, and by Proposition 12, the 𝑑𝑖’s can be directly read off the prime factorization of 
𝜙(𝑛). Hence, looking at the prime factorization after multiplying the totient at each step of 
the extension, i.e. numbers in the blue strips without repeat (e.g. 𝜙(5) = 4 appears twice in 
Fig. 1), would give the total amount of roots required to achieve the full extension. As an 
illustration, for 𝜁1633, with reference to Fig. 1, 

2 ⋅ 4 ⋅ 6 ⋅ 10 ⋅ 1540 = 739200 = 27 ⋅ 3 ⋅ 52 ⋅ 7 ⋅ 11 
which means that there are 7 square roots, 1 cube root, 2 fifth roots, 1 seventh root, and 1 
eleventh root in the algebraic expression for 𝜁1633. 

In Appendix C, I used Python to compile a list of the types of roots present in the algebraic 
expressions for the 𝑛th root of unity from 1 to 100. Past 𝜁2, all roots of unity require square 
roots, and as the degree of the root increases, they appear less frequently in the algebraic 
expressions (e.g. only 𝜁83 requires a 41st-root), although the frequency increases slightly 
with higher roots of unity (e.g. square, cube and fifth roots are significantly more 
concentrated and have higher frequency at the bottom). This is expected since in general, 
as 𝑛 increases, so does its totient, and there are higher prime factors in their respective 
‘trees’. 
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To conclude this section, I have proven the existence of algebraic expressions for the roots 
of unity and devised a method to obtain the 𝑝-th roots necessary to build them. Intuitively, 
it is expected that algebraic expressions for roots of unity exist, since they are roots of the 
polynomial 𝑥𝑛 − 1, which is quite simple; it would be surprising if solutions to this equation 
cannot be expressed algebraically. It is then natural to ask if all roots of polynomials are 
this way too. 
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Section 2: Roots of Polynomials 
The solution to the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, the quadratic formula, is well-
known: 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Interestingly, there are also cubic and quartic formulae, respectively for the cubic 𝑎𝑥3 +
𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 and the quartic 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0, which utilizes only the 
algebraic operations in the coefficients. This guarantees the existence of algebraic 
expressions for roots of polynomial equations of degree less than or equal to 4. Can the 
same be said for all polynomial equations, in particular, quintic equations (degree-5 
polynomial equations)? If not, when can the roots of a polynomial be solved by radicals? 

Section 2.1: Solvability as a Necessary Condition 

As argued at the start of Section 1.1, the required condition is to have the root be contained 
in a field that is a radical extension of the field the coefficients of the polynomial exist in 
(the base field). Alternatively, to accommodate all the roots of the polynomial, the whole 
splitting field 𝐿 of the polynomial over the base field 𝐹 must be contained in a radical 
extension of 𝐹. 

Consider that I start with a radical extension 𝐸/𝐹 with 𝐿 ⊆ 𝐸, and a series like (1) with each 

𝐹𝑖+1 = 𝐹𝑖 ( √𝑎𝑖
𝑑𝑖 ) where 𝑎𝑖 ∈ 𝐹𝑖. For applying the main theorems discussed above, I need to 

modify this series such that it meets several conditions. First, to conclude the cyclicality of 
the Galois groups of the individual extensions, Proposition 7 requires the extensions to also 
be Kummer (otherwise the Galois group is trivial), which necessitates the existence of all 
𝜁𝑑𝑖’s in the base field. This can be done by defining 𝑁 = 𝑑0𝑑1𝑑2⋯𝑑𝑚−1 and extending to a 

field �̃� containing 𝜁𝑁  first. By Theorem 13, this does not violate radicality. 

Next, for applying FTGT, I need the full extension to be Galois. By Lemma 3, this can be 
done by requiring that the final field �̃� be a splitting field; specifically, if 𝑓𝑖 ∈ 𝐹[𝑥] is the 

minimal polynomial of √𝑎𝑖
𝑑𝑖  over 𝐹, then I aim to have �̃� be the splitting field of 

𝑓0𝑓1𝑓2⋯𝑓𝑚−1. At each step of the extension, then, in addition to adjoining √𝑎𝑖
𝑑𝑖 , adjoin also 

the other roots of 𝑓𝑖, so that the resulting field is a splitting field of 𝑓𝑖  over the previous field. 

Summarizing the two modifications, the resulting tower of fields is 
𝐹 ⊆ �̃� ≔ �̃�0 ⊆ �̃�1 ⊆ �̃�2 ⊆ ⋯ ⊆ �̃�𝑚 ≔ �̃� (7) 

where �̃�𝑖+1 is the splitting field of 𝑓𝑖 ∈ 𝐹[𝑥] over �̃�𝑖. It remains to show that this sequence 
remains radical. 
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Define 𝑟𝑖,𝑗 where 1 ≤ 𝑗 ≤ deg 𝑓𝑖  as the roots of 𝑓𝑖  and without loss of generality write 𝑟𝑖,1 =

√𝑎𝑖
𝑑𝑖 . Any 𝜙 ∈ 𝐺 ≔ Gal(�̃�/𝐹) is going to send 𝑟𝑖,1 to any of the 𝑟𝑖,𝑗’s, and I conjecture that 

there exists 𝜙 ∈ 𝐺 sending 𝑟𝑖,1 to every other root. If this is the case, then since 𝑟𝑖,1
𝑑𝑖 = 𝑎𝑖 ∈

�̃�𝑖, for all 𝑗 there exists 𝜙 such that 

𝑟𝑖,𝑗
𝑑𝑖 = [𝜙(𝑟𝑖,1)]

𝑑𝑖
= 𝜙(𝑟𝑖,1

𝑑𝑖) = 𝜙(𝑎𝑖) (8) 

By construction of 𝐹𝑖  and Lemma 2, 
𝑎𝑖 = 𝑔𝑖(𝑟1,1, 𝑟2,1, ⋯ , 𝑟𝑖−1,1) 

where 𝑔𝑖 ∈ 𝐹[𝑥1, 𝑥2, ⋯ , 𝑥𝑖−1]. Thus 

𝜙(𝑎𝑖) = 𝑔𝑖 (𝜙(𝑟1,1), 𝜙(𝑟2,1),⋯ , 𝜙(𝑟𝑖−1,1)) 

where by Lemma 1, each 𝜙(𝑟𝑘,1) = 𝑟𝑘,𝑙 ∈ �̃�𝑘+1 ⊆ �̃�𝑖  for some 𝑙 and all 1 ≤ 𝑘 ≤ 𝑖 − 1. Thus, 
by closure, 𝜙(𝑎𝑖) ∈ �̃�𝑖, and due to (8), I may write 

𝑟𝑖,𝑗 = 𝜁𝑑𝑖
𝑛𝑖,𝑗
√𝑥𝑖,𝑗
𝑑𝑖  

for some 0 ≤ 𝑛𝑖,𝑗 ≤ 𝑑𝑖 − 1 and some 𝑥𝑖,𝑗 ∈ �̃�𝑖, which are not necessarily distinct. Since 

𝜁𝑑𝑖 ∈ �̃� ⊆ �̃�𝑖, and �̃�𝑖+1 is the splitting field of 𝑓𝑖  over �̃�𝑖, 

�̃�𝑖+1 = �̃�𝑖(𝑟𝑖,1, 𝑟𝑖,2, ⋯ , 𝑟𝑖,deg 𝑓𝑖) = �̃�𝑖( √𝑥𝑖,1
𝑑𝑖 , √𝑥𝑖,2

𝑑𝑖 , ⋯ , √𝑥𝑖,deg 𝑓𝑖
𝑑𝑖 ) 

Hence �̃�𝑖+1/�̃�𝑖  is radical, and therefore �̃�/�̃� and �̃�/𝐹 are radical. By construction, then, �̃� is 
obtained as a series of Kummer extensions of �̃� (since 𝜁𝑑𝑖 ∈ �̃�) which itself can be 
constructed as a series of Kummer extensions of 𝐹 by Theorem 13. 

For proving the conjecture, 

Proposition 14. Let 𝐸/𝐹 be a Galois extension and 𝑓 ∈ 𝐹[𝑥] irreducible over 𝐹 that splits 
over 𝐸. Then 𝐺 ≔ Gal(𝐸/𝐹) acts transitively on the roots of 𝑓, i.e. for any pair of roots, there 
exists 𝜙 ∈ 𝐺 sending one root to the other. 

Proof. Suppose for contradiction that 𝐺 does not act transitively. Let 𝑟 and 𝑟′ be roots of 𝑓 
such that there does not exist 𝜙 ∈ 𝐺 where 𝜙(𝑟) = 𝑟′. Now, define 

𝒪 = {𝜙(𝑟)|𝜙 ∈ 𝐺} 
Evidently, 𝑟′ ∉ 𝒪. Consider the polynomial 

𝑔(𝑥) =∏(𝑥 − 𝑠)

𝑠∈𝒪

≠ 𝑓(𝑥) 

because it is missing at least a factor of 𝑥 − 𝑟′. By closure, for every 𝑠 ∈ 𝒪 and any 𝜓 ∈ 𝐺, 
𝜓(𝑠) ∈ 𝒪. Since 𝜓 is bijective, it permutes 𝒪, which means 𝜓(𝑔(𝑥)) only permutes the 
order of the products and is hence equal to 𝑔(𝑥). Thus the coefficients of 𝑔 are fixed by 𝐺. 
Since 𝐸/𝐹 is Galois, 𝑔 ∈ 𝐹[𝑥], and by construction, it also divides 𝑓, meaning that 𝑓 is not 
irreducible over 𝐹, hence contradiction. QED. 
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Since minimal polynomials are irreducible, Proposition 14 applies to all 𝑓𝑖 ∈ 𝐹[𝑥] and the 
extension �̃�/𝐹. Since 𝐺 = Gal(�̃�/𝐹) acts transitively on the roots of 𝑓𝑖, there exists 𝜙 ∈ 𝐺 

such that 𝜙(𝑟𝑖,1) = 𝑟𝑖,𝑗 for all 𝑗, proving the conjecture. 

Thus, if I have a radical extension 𝐸/𝐹 written like (1), then I can write down another tower 
of fields (7) which is both Galois and obtained as a series of Kummer extensions. That 
means 

𝐹 ≔ 𝐾0 ⊂ 𝐾1 ⊂ 𝐾2 ⊂ ⋯ ⊂ 𝐾𝑚′ ≔ �̃� 
where �̃�/𝐹 is Galois and each 𝐾𝑖+1/𝐾𝑖 is Kummer. This allows for the application of FTGT, 
thereby obtaining a series of descending normal subgroups: 

𝐺 ≔ Gal(�̃�/𝐹) ≔ 𝐻0 ⊳ 𝐻1 ⊳ 𝐻2 ⊳ ⋯ ⊳ 𝐻𝑚′ ≅ {𝑒} 
and by Proposition 7, Gal(𝐾𝑖+1/𝐾𝑖) ≅ 𝐻𝑖/𝐻𝑖+1 is cyclic. Refine this into a full decomposition 
series to conclude that Gal(�̃�/𝐹) has cyclic factors, i.e. it is a solvable group. 

I can arrive at a necessary condition for the inclusion of the splitting field 𝐿 in a radical 
extension by noting that 

𝐹 ⊆ 𝐿 ⊆ �̃� 

and since both 𝐿/𝐹 and �̃�/𝐹 are Galois, after invoking FTGT, I can write 
𝐺 ⊵ 𝐻 ⊵ {𝑒} 

with 𝐺 solvable. 𝐻 ⊴ 𝐺 is also solvable, since all the factors of 𝐺, and hence 𝐻, are cyclic. 
By Lemma 5, Gal(𝐿/𝐹) ≅ 𝐺/𝐻, and as argued in Section 1.3, its factors include that of 𝐺 
that are not factors of 𝐻, so it also has cyclic factors. Hence Gal(𝐿/𝐹) is solvable too. 

Thus, I have derived the solvability of a polynomial’s Galois group as a necessary condition 
for the splitting field to be included in a radical extension of the base field. In the next 
section, I will prove the converse of this result, i.e. that solvability is also a sufficient 
condition. 

Section 2.2: Solvability as a Sufficient Condition 

Consider 𝑓 ∈ 𝐹[𝑥] and 𝐿 its splitting field over 𝐹 such that Gal(𝐿/𝐹) is solvable. This means 
that from its full decomposition series, 

{𝑒} ≅ 𝐻0 ⊲ 𝐻1 ⊲ 𝐻2 ⊲ ⋯ ⊲ 𝐻𝑚 ≔ Gal(𝐿/𝐹) 

I can invoke FTGT (since 𝐿/𝐹 is Galois by Lemma 3) to yield 
𝐿 ≔ 𝐹0 ⊃ 𝐹1 ⊃ 𝐹2 ⊃ ⋯ ⊃ 𝐹𝑚 ≔ 𝐹 

with each Gal(𝐹𝑖/𝐹𝑖+1) ≅ 𝐻𝑖+1/𝐻𝑖 ≅ ℤ𝑑𝑖  for some 𝑑𝑖 by construction. In similar fashion to 
Section 2.1, I need to modify this tower of fields to utilize Proposition 8. I need the 𝐹𝑖’s to 
also contain the various 𝜁𝑑𝑖’s, so first define 𝑁 ≔ 𝑑0𝑑1𝑑2⋯𝑑𝑚−1. By Theorem 13, there 

exists �̃� containing 𝜁𝑁  which is a radical extension of 𝐹 that can be expressed as a series of 
Kummer extensions of 𝐹, i.e. it is obtained by adjoining a sequence of radicals to 𝐹: 



18 
 

�̃� = 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑘) 
So, for each 0 ≤ 𝑖 ≤ 𝑚, adjoin to 𝐹𝑖  all the 𝛼𝑗’s, i.e. �̃�𝑖 = 𝐹𝑖(𝛼1, 𝛼2, ⋯ , 𝛼𝑘), and define �̃� =
�̃�𝑚. Then I will obtain a new tower of fields 

𝐹 ⊆ �̃� ≔ �̃�𝑚 ⊂ �̃�𝑚−1 ⊂ �̃�𝑚−2⋯ ⊂ �̃�1 ⊂ �̃�0 ≔ �̃� 

It remains to show that each �̃�𝑖/�̃�𝑖+1 remains radical. First note that since 𝐹𝑖/𝐹𝑖+1 is Galois 
by Lemma 5, by Lemma 3 it is the splitting field of some 𝑓𝑖 ∈ 𝐹𝑖[𝑥], hence by definition, 

𝐹𝑖 = 𝐹𝑖+1(𝑟𝑖,1, 𝑟𝑖,2, ⋯ , 𝑟𝑖,deg𝑓𝑖) 

where 𝑟𝑖,𝑗 are the roots of 𝑓𝑖. By construction, �̃�𝑖  remains the splitting field of 𝑓𝑖  over �̃�𝑖+1, 
since 

�̃�𝑖 = 𝐹𝑖(𝛼1, 𝛼2, ⋯ , 𝛼𝑘) 
= 𝐹𝑖+1(𝛼1, 𝛼2, ⋯ , 𝛼𝑘;  𝑟𝑖,1, 𝑟𝑖,2, ⋯ , 𝑟𝑖,deg𝑓𝑖) 

= �̃�𝑖+1(𝑟𝑖,1, 𝑟𝑖,2, ⋯ , 𝑟𝑖,deg 𝑓𝑖) 

Hence, �̃�𝑖/�̃�𝑖+1 is Galois. Now, I conjecture that each Gal(�̃�𝑖/�̃�𝑖+1) remains cyclic, this time, 

of some order �̃�𝑖 dividing 𝑁, since this would allow for the application of Proposition 8, 
because 𝜁�̃�𝑖  as a power of 𝜁𝑁  is in �̃� ⊆ �̃�𝑖+1, to conclude that each �̃�𝑖/�̃�𝑖+1 is Kummer, so 

that �̃�/�̃� is radical and therefore �̃�/𝐹 too by Theorem 13. Hence 𝐿 ⊆ �̃� is contained in a 
radical extension of 𝐹. 

The conjecture is proven below: 

Proposition 15. Let 

{
𝐹 ⊆ 𝐾 ⊆ 𝑀
𝐹 ⊆ 𝐸 ⊆ 𝑀

 

where 𝐸 is the splitting field of some 𝑓 ∈ 𝐹[𝑥] over 𝐹, and 𝑀 is the splitting field of the 
same 𝑓 over 𝐾. Then Gal(𝑀/𝐾) is isomorphic to a subgroup of Gal(𝐸/𝐹). 

Proof. By Lemma 3, 𝐸/𝐹 is Galois, and the minimal polynomial 𝑓 of any 𝑥 ∈ 𝐸 over 𝐹 
completely splits in 𝐸. By Lemma 1, then, any automorphism of 𝑀 sends 𝑥 to a root of 𝑓 
which is in 𝐸, so 𝜙(𝑥) ∈ 𝐸. Additionally, any 𝜓 ∈ Gal(𝑀/𝐾) fixes 𝐹 ⊆ 𝐾, which means that 
𝜓 also induces an automorphism in 𝐸 ⊆ 𝑀 over 𝐹. Consider the mapping 𝜎 ∶ Gal(𝑀/𝐾) →
Gal(𝐸/𝐹) defined by 

𝜎(𝜓) = 𝜓|𝐸  
It satisfies the homomorphism property as for any 𝜒, 𝜒′ ∈ Gal(𝑀/𝐾), 

𝜎(𝜒 ∘ 𝜒′) = (𝜒 ∘ 𝜒′)|𝐸 = 𝜒|𝐸 ∘ 𝜒
′|𝐸 = 𝜎(𝜒) ∘ 𝜎(𝜒

′) 
I now need to prove that 𝜎 is injective. Let 𝑟𝑖 where 1 ≤ 𝑖 ≤ deg 𝑓 be the roots of 𝑓. Then 

{
𝐸 = 𝐹(𝑟1, 𝑟2, ⋯ , 𝑟deg𝑓)

𝑀 = 𝐾(𝑟1, 𝑟2, ⋯ , 𝑟deg𝑓)
 

By Lemma 2, any 𝑥 ∈ 𝑀 is of the form 𝑥 = 𝑔(𝑟1, 𝑟2, ⋯ , 𝑟deg𝑓), where 𝑔 ∈ 𝐾[𝑥1, 𝑥2, ⋯ , 𝑥deg𝑓]. 
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Now suppose 𝜓|𝐸 = 𝜓′|𝐸, and write 

{
𝜓(𝑥) = 𝑔 (𝜓(𝑟1), 𝜓(𝑟2),⋯ , 𝜓(𝑟deg𝑓))

𝜓′(𝑥) = 𝑔 (𝜓′(𝑟1), 𝜓
′(𝑟2),⋯ , 𝜓

′(𝑟deg𝑓))
 

But since all 𝑟𝑖 ∈ 𝐸, and 𝜓|𝐸(𝑟𝑖) = 𝜓′|𝐸(𝑟𝑖), 𝜓(𝑟𝑖) = 𝜓′(𝑟𝑖), which means 𝜓(𝑥) = 𝜓′(𝑥), 
hence 𝜎 is injective. This means that Gal(𝑀/𝐾) is isomorphic to its image, which is a 
subgroup of Gal(𝐸/𝐹). QED. 

Utilizing Proposition 15 by recognizing the towers of fields 

{
𝐹𝑖+1 ⊆ �̃�𝑖+1 ⊆ �̃�𝑖
𝐹𝑖+1 ⊆ 𝐹𝑖 ⊆ �̃�𝑖

 

where �̃�𝑖  and 𝐹𝑖  are the splitting fields of the same polynomial 𝑓𝑖  over �̃�𝑖+1 and 𝐹𝑖+1 
respectively, I can prove that Gal(�̃�𝑖/�̃�𝑖+1) is isomorphic to a subgroup of Gal(𝐹𝑖/𝐹𝑖+1) ≅

ℤ𝑑𝑖, which means it must be cyclic of order �̃�𝑖 dividing 𝑑𝑖 which divides 𝑁, therefore proving 
the conjecture. 

Thus, as argued above, if the Galois group of a polynomial is solvable, then its splitting field 
is contained in a radical extension of the base field. Combining this with the result of 
Section 2.1, I arrive at: 

Theorem 16. Let 𝑓 ∈ 𝐹[𝑥] and 𝐿 its splitting field over 𝐹. 𝐿 is contained in a radical 
extension of 𝐹 if and only if Gal(𝐿/𝐹) is solvable. 
Corollary. A polynomial is solvable by radicals if and only if its Galois group is solvable. 

Section 2.3: Galois Groups of Polynomials 

Theorem 16 is a profound and widely known result, and is a very useful tool for discerning 
the solvability of a polynomial by radicals through its Galois group, bypassing the necessity 
for direct and explicit determination of its roots, which usually involves a very complicated 
and tedious procedure. 

Let 𝑓 ∈ 𝐹[𝑥], and 𝐿 its splitting field over 𝐹. Without loss of generality, I can assume all 
roots of 𝑓 to be distinct, so there are 𝑛 ≔ deg 𝑓 roots: 𝑟1, 𝑟2,⋯ , 𝑟𝑛, which makes 𝐿 =
𝐹(𝑟1, 𝑟2, ⋯ , 𝑟𝑛). Since any 𝜙 ∈ Gal(𝐿/𝐹) is bijective, Lemma 1 implies that 𝜙 permutes the 
roots of 𝑓, which means each automorphism acts as a permutation of 𝑛 elements; and by 
Lemma 2, each permutation completely determines the full automorphism, so Gal(𝐿/𝐹) 
can be seen as a group of permutations on the 𝑛 roots of 𝑓, and is therefore isomorphic to a 
subgroup of 𝑆𝑛, the group of all permutations of 𝑛 elements.  

For polynomials of degree 4 or lower, since they have at most 4 distinct roots, their Galois 
groups are isomorphic to subgroups of 𝑆𝑛 for 𝑛 ≤ 4, and their full decomposition series are: 
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𝒏 Decomposition Series Factors10  
1 {𝑒} ≅ 𝑆1 N/A 
2 {𝑒} ⊲ ℤ2 ≅ 𝑆2 ℤ2 
3 {𝑒} ⊲ ℤ3 ⊲ 𝑆3 ℤ3, ℤ2 
4 {𝑒} ⊲ ℤ2 ⊲ 𝑉11 ⊲ 𝐴412 ⊲ 𝑆4 ℤ2, ℤ2, ℤ3, ℤ2 

Table 1: Decomposition Series and Factors of 𝑆𝑛, 𝑛 ≤ 4 

Since all the factors are cyclic, 𝑆𝑛 for 𝑛 ≤ 4 are all solvable. It is a fact that subgroups of 
solvable groups are also solvable: 

Lemma 17. Let 𝐺 be solvable, and 𝐻 ⊆ 𝐺. Then 𝐻 is solvable. 

Hence the Galois group of any polynomial with degree less than or equal to 4 is solvable by 
radicals. This explains the existence of an ‘algebraic formula’ for the linear, quadratic, 
cubic, and quartic equations, since their roots are necessarily expressible in the algebraic 
operations. However, this changes for the quintic and above, since the subgroups of 𝑆𝑛 for 
𝑛 ≥ 5 are not necessarily solvable. In fact, their decomposition series are: 

{𝑒} ⊲ 𝐴𝑛 ⊲ 𝑆𝑛 
where 𝐴𝑛 is a simple group13 which is not cyclic. This implies that 𝑆𝑛 is not solvable, and 
any polynomial with such a Galois group by Theorem 16 is not solvable by radicals. 

It remains to show that there actually exists a polynomial with a non-solvable Galois group 
to demonstrate that solving polynomial equations by radicals is in general impossible. A 
natural choice is to pick the Galois group 𝑆𝑛 for a degree-𝑛 polynomial; however, proving 
that a counterexample exists for each 𝑆𝑛 requires solving the inverse Galois problem for 

𝑆𝑛14 for all 𝑛 ≥ 5, which is in itself a complex topic worth dedicated discussion. In the 
following I show that there exist quintic polynomials with the non-solvable Galois group 𝑆5. 

Section 2.4: Insolvability of the Quintic 

Here, I use the counterexample 𝑓(𝑥) = 𝑥5 − 4𝑥 + 2 ∈ ℚ[𝑥]. Let 𝐿 be the splitting field of 𝑓 
over ℚ; I aim to prove that the Galois group of 𝑓, i.e. 𝐺 ≔ Gal(𝐿/ℚ) ≅ 𝑆5. Firstly, and 
perhaps most importantly, I need to confirm that 𝑓(𝑥) has 5 distinct roots, which can be 
easily done with a numerical approximation: 

 
10 The factors are listed in order from left to right corresponding to the quotient subgroup of each pair of 
adjacent groups in the decomposition series. 
11 𝑉 is the Klein-four group, isomorphic to {𝑒, 𝑎, 𝑏, 𝑎𝑏}, where 𝑎2 = 𝑏2 = (𝑎𝑏)2 = 𝑒. It is abelian. 
12 𝐴𝑛 is the alternating group of degree 𝑛, defined as the group of even permutations of 𝑛 elements. 
13 Sheng, 2022, p. 6 
14 The inverse Galois problem for a group 𝐺 asks if there exists a polynomial in ℚ[𝑥] with Galois group 𝐺. 
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{
 
 

 
 

𝑟1 ≈ −1.51851
𝑟2 ≈ 0.508499
𝑟3 ≈ 1.2436

𝑟4 ≈ −0.116792 − 1.43845𝑖
𝑟5 ≈ −0.116792 + 1.43845𝑖

15 (9) 

So 𝐺 is indeed isomorphic to a subgroup of 𝑆5. Now I need to prove that it is isomorphic to 
the whole 𝑆5, by showing that it contains all possible permutations of its roots. Intuitively, 
any permutation in 𝑆𝑛 can be expressed as a composition of transpositions, i.e. 
permutations that swap only two elements while leaving others fixed16. Now, I claim that: 

Proposition 18. Let 𝜎, 𝜏 ∈ 𝐺 ⊆ 𝑆𝑝 where 𝑝 is a prime, such that 𝜎 has order 𝑝 and 𝜏 is a 
transposition. Then 𝐺 ≅ 𝑆𝑝. 

Proof. Without loss of generality, let the elements of 𝐺 permute the set 
𝒮 = {𝑘|1 ≤ 𝑘 ≤ 𝑝} 

where 𝜏 is a transposition between 1 and 𝑞 + 1 for some 𝑞 < 𝑝, and 𝜎 is defined by 𝜎(𝑘) =
𝑘 + 1 for all 𝑘 ∈ 𝒮 (here, 𝑘 ±𝑚 denotes the element 𝑚 spaces after and before 𝑘 
respectively, which cycles back to 1 if larger than 𝑝 and 𝑝 if smaller than 1). Now, let 𝑘 ∈ 𝒮, 
and define the permutation 𝜙𝑘 ≔ 𝜎𝑘−1 ∘ 𝜏 ∘ 𝜎−(𝑘−1). Since 

{

𝜙𝑘(𝑘) = (𝜎
𝑘−1 ∘ 𝜏 ∘ 𝜎−(𝑘−1))(𝑘) = (𝜎𝑘−1 ∘ 𝜏)(1) = 𝜎𝑘−1(𝑞 + 1) = 𝑘 + 𝑞

𝜙𝑘(𝑘 + 𝑞) = (𝜎
𝑘−1 ∘ 𝜏 ∘ 𝜎−(𝑘−1))(𝑘 + 𝑞) = (𝜎𝑘−1 ∘ 𝜏)(𝑞 + 1) = 𝜎𝑘−1(1) = 𝑘

𝜙𝑘(𝑙) = (𝜎
𝑘−1 ∘ 𝜏 ∘ 𝜎−(𝑘−1))(𝑙) = (𝜎𝑘−1 ∘ 𝜏)(𝑙 − 𝑘 + 1) = 𝜎𝑘−1(𝑙 − 𝑘 + 1) = 𝑙

 

where 𝑙 ≠ 𝑘, 𝑘 + 𝑞, 𝜙𝑘 is a transposition swapping 𝑘 and 𝑘 + 𝑞. Next, claim that there exists 
a transposition 𝜓𝑘 ∈ 𝐺 swapping 1 and any 𝑘 ∈ 𝒮. Since 𝑝 is prime, 𝑞 is coprime to 𝑝, so 
𝑞 + 1, 2𝑞 + 1, 3𝑞 + 1… iterates over the whole set 𝒮, so any 𝑘 may be written as 𝑛𝑞 + 1. 
Now, proceed by induction on 𝑛. The base case 𝑛 = 1 is trivial, for 𝜓𝑞+1 = 𝜏 ∈ 𝐺. For the 
inductive step, let 𝑘 = 𝑛𝑞 + 1 and assume 𝜓𝑘 exists. Consider 𝜓𝑘+𝑞 ≔ 𝜓𝑘 ∘ 𝜙𝑘 ∘ 𝜓𝑘: 

{
 

 
𝜓𝑘(1) = (𝜓𝑘 ∘ 𝜙𝑘 ∘ 𝜓𝑘)(1) = (𝜓𝑘 ∘ 𝜙𝑘)(𝑘) = 𝜓𝑘(𝑘 + 𝑞) = 𝑘 + 𝑞

𝜓𝑘+1(𝑘 + 𝑞) = (𝜓𝑘 ∘ 𝜙𝑘 ∘ 𝜓𝑘)(𝑘 + 𝑞) = (𝜓𝑘 ∘ 𝜙𝑘)(𝑘 + 𝑞) = 𝜓𝑘(𝑘) = 1

𝜓𝑘+1(𝑘) = (𝜓𝑘 ∘ 𝜙𝑘 ∘ 𝜓𝑘)(𝑘) = (𝜓𝑘 ∘ 𝜙𝑘)(1) = 𝜓𝑘(1) = 𝑘

𝜓𝑘+1(𝑙) = (𝜓𝑘 ∘ 𝜙𝑘 ∘ 𝜓𝑘)(𝑙) = (𝜓𝑘 ∘ 𝜙𝑘)(𝑙) = 𝜓𝑘(𝑙) = 𝑙

 

where 𝑙 ≠ 1, 𝑘, 𝑘 + 𝑞. Hence 𝜓𝑘+𝑞 = 𝜓(𝑛+1)𝑞+1 is a transposition swapping 1 and 𝑘 + 𝑞 =
(𝑛 + 1)𝑞 + 1, hence the claim is proven. Next, pick any 𝑝, 𝑞 ∈ 𝒮. The desired transposition 
swapping them may be expressed as 𝜒 = 𝜓𝑝 ∘ 𝜓𝑞 ∘ 𝜓𝑝, because: 

 
15 Wolfram|Alpha. (n.d.). Solve for x, x^5 - 4x + 2 = 0 [Computational result]. 
https://www.wolframalpha.com/input?i=solve+for+x%2C+x%5E5-4x%2B2%3D0 
16 Grinberg, D. (2022). Lecture 28: Permutations [Lecture notes]. Drexel University, p. 1. 
https://www.cip.ifi.lmu.de/~grinberg/t/22fco/lec28.pdf 

https://www.wolframalpha.com/input?i=solve+for+x%2C+x%5E5-4x%2B2%3D0
https://www.cip.ifi.lmu.de/~grinberg/t/22fco/lec28.pdf
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{
 
 

 
 
𝜒(𝑝) = (𝜓𝑝 ∘ 𝜓𝑞 ∘ 𝜓𝑝)(𝑝) = (𝜓𝑝 ∘ 𝜓𝑞)(1) = 𝜓𝑝(𝑞) = 𝑞

𝜒(𝑞) = (𝜓𝑝 ∘ 𝜓𝑞 ∘ 𝜓𝑝)(𝑞) = (𝜓𝑝 ∘ 𝜓𝑞)(𝑞) = 𝜓𝑝(1) = 𝑝

𝜒(1) = (𝜓𝑝 ∘ 𝜓𝑞 ∘ 𝜓𝑝)(1) = (𝜓𝑝 ∘ 𝜓𝑞)(𝑝) = 𝜓𝑝(𝑝) = 1

𝜒(𝑙) = (𝜓𝑝 ∘ 𝜓𝑞 ∘ 𝜓𝑝)(𝑙) = (𝜓𝑝 ∘ 𝜓𝑞)(𝑙) = 𝜓𝑝(𝑙) = 𝑙

 

where 𝑙 ≠ 1, 𝑝, 𝑞. Hence, a transposition between any two arbitrary elements exists in 𝐺, 
and by closure, 𝐺 contains every permutation for they are compositions of transpositions. 
So 𝐺 ≅ 𝑆𝑝. QED. 

Since 5 is a prime, Proposition 18 applies; I only need to show that there are 
automorphisms in 𝐺 that act as a transposition and a permutation of order 5 on the roots. 
The former is relatively easier to prove, since (9) shows that 𝑓 has 2 complex roots, which 
are complex conjugates of each other by the complex conjugation theorem; now, notice 
that since 𝐿 ⊂ ℂ, the complex conjugate 𝜙 ∶ 𝐿 → 𝐿 defined by 

𝜙(𝑧) = 𝑧∗ 
for any 𝑧 ∈ 𝐿 is necessarily an automorphism in 𝐿 that fixes ℚ ⊂ ℝ, since it satisfies the 
homomorphism property and is bijective, therefore 𝜙 ∈ 𝐺. Because the complex roots of 𝑓 
are conjugates of each other, 𝜙 acts as a transposition between these two roots. 

It remains to show that 𝐺 contains an automorphism 𝜓 of order 5. Observe that, as argued 
in the proof for Proposition 10, ⟨𝜓⟩ ≅ ℤ5 would be a subgroup of 𝐺, which by Lemma 6, 
means that 5 divides |𝐺|. Motivated by this, I also claim that the converse is true: 

Proposition 19 (Cauchy’s Theorem). Let 𝑝 be a prime and 𝐺 be a group. If 𝑝 divides |𝐺|, 
then 𝐺 contains an element of order 𝑝. 

Proof. Define 
𝒮 = {(𝑔1, 𝑔2, ⋯ , 𝑔𝑝)|𝑔1, 𝑔2, ⋯ , 𝑔𝑝 ∈ 𝐺, 𝑔1𝑔2⋯𝑔𝑝 = 𝑒} 

Consider 𝑛, the number of elements in 𝒮. The first 𝑝 − 1 elements can be chosen freely, 
and the last element is constrained by the relation that 𝑔1𝑔2⋯𝑔𝑝 = 𝑒; therefore, 𝑛 =
|𝐺|𝑝−1 is divisible by 𝑝. For each (𝑔1, 𝑔2, ⋯ , 𝑔𝑝) ∈ 𝒮, then, 

𝑔𝑘𝑔𝑘+1⋯𝑔𝑝𝑔1𝑔2⋯𝑔𝑘−1 = (𝑔𝑘𝑔𝑘+1⋯𝑔𝑝)[(𝑔1𝑔2⋯𝑔𝑝)(𝑔𝑝
−1𝑔𝑝−1

−1 ⋯𝑔𝑘
−1)] 

= (𝑔𝑘𝑔𝑘+1⋯𝑔𝑝)(𝑔𝑝
−1𝑔𝑝−1

−1 ⋯𝑔𝑘
−1) = 𝑒 

Hence (𝑔𝑘, 𝑔𝑘+1,⋯ 𝑔𝑝, 𝑔1, 𝑔2, ⋯ 𝑔𝑘−1) ∈ 𝒮 where 1 ≤ 𝑘 ≤ 𝑝, which are not necessarily 
distinct. If they are distinct, then there are 𝑝 such elements; if they are not, then there 
exists some 𝑘 such that 

(𝑔1, 𝑔2, ⋯ , 𝑔𝑝) = (𝑔𝑘, 𝑔𝑘+1,⋯ 𝑔𝑝, 𝑔1, 𝑔2, ⋯ 𝑔𝑘−1) 
then 𝑔𝑖 = 𝑔𝑖+(𝑘−1) = 𝑔𝑖+2(𝑘−1) = 𝑔𝑖+3(𝑘−1) = ⋯ (indices cycle back to 1 if larger than 𝑝). But 
because 𝑝 is prime, the index iterates over all of 1, 2,⋯ , 𝑝, which implies that all 𝑔 ≔ 𝑔𝑖 are 
equal, and that 𝑔𝑝 = 𝑒. Now suppose for contradiction that 𝐺 does not contain any 
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element of order 𝑝. This means that only 𝑔 = 𝑒 satisfies 𝑔𝑝 = 𝑒, so except for (𝑒, 𝑒,⋯ , 𝑒), 
every element in 𝒮 implies the existence of 𝑝 − 1 others in 𝒮; hence 

𝑛 − 1 ≡ 0 (mod𝑝) 
∴ 𝑛 ≡ 1 (mod𝑝) 

But as argued above, 𝑝 divides 𝑛, hence contradiction. QED. 

According to Proposition 19, then, I need only prove that 5 divides |𝐺|. To do so, first let 𝛼 
be a root of 𝑓, and conjecture that 𝑓 is the minimal polynomial of 𝛼 over ℚ. By Lemma 2, 
then, since 

ℚ ⊆ ℚ(𝛼) ⊆ 𝐿 
hence [ℚ(𝛼) ∶ ℚ] = 5, which divides [𝐿 ∶ ℚ] = |𝐺| by Lemma 3 due to the multiplicativity of 
field extensions. This would prove that 𝐺 contains an element of order 5 (in addition to a 
transposition as argued above), hence 𝐺 ≅ 𝑆5, and 𝑓 is not solvable by radicals. 

To prove the conjecture, it suffices to prove that 𝑓(𝑥) = 𝑥5 − 4𝑥 + 2 is irreducible over ℚ17. 
This may be done through Eisenstein’s criterion, namely: 

Lemma 20 (Eisenstein’s Criterion). Let 

𝑓(𝑥) = ∑𝑐𝑘𝑥
𝑘

𝑛

𝑘=0

∈ ℤ[𝑥] 

Then 𝑓 is irreducible over ℚ if there exists prime 𝑝 such that: 
(1) 𝑝 divides each 𝑐𝑘 for 0 ≤ 𝑘 < 𝑛; 
(2) 𝑝 does not divide 𝑐𝑛; 
(3) 𝑝2 does not divide 𝑐0. 

Here, choose 𝑝 = 2. It divides all non-leading coefficients −4, 2, and 0, and it does not 
divide the leading coefficient 1. Also, 22 = 4 does not divide the constant term 2, so 
Eisenstein’s criterion applies to conclude that 𝑓 is irreducible over ℚ. Therefore, as argued 
above, 𝐺 ≅ 𝑆5 is not solvable, and by Theorem 16, the roots of 𝑓 do not have algebraic 
expressions. This implies that: 

Theorem 21. There exists a quintic polynomial in ℚ[𝑥] whose splitting field over ℚ is not 
contained in a radical extension of ℚ. 
Corollary. There exists a quintic polynomial in ℚ[𝑥] not solvable by radicals. 
Corollary. There does not exist a quintic formula18.  

 
17 Otherwise, 𝑓 is divisible by the true minimal polynomial of 𝛼. But 𝑓 is irreducible, hence contradiction. 
18 Otherwise I may use this ‘quintic formula’ to express the roots of 𝑓 algebraically. 
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Conclusion 
In this essay, I have demonstrated how Galois theory may be used to discern the existence 
and properties of algebraic expressions for different numbers. In Section 1, I showed that 
all roots of unity have algebraic expressions, and provided a method to determine the 
various roots required to build them; and in Section 2, I have shown the solvability of a 
polynomial’s Galois group as a necessary and sufficient condition for its solvability by 
radicals, and provided a counterexample to show that roots of quintic polynomials in 
general do not have algebraic expressions, hence concluding that a quintic formula cannot 
exist. Nevertheless, more Galois-theoretic machinery is needed to provide more 
satisfactory and specific results, for example, distinguishing composite roots between 
separate prime roots in the method outlined in Section 1.4 (e.g. a fourth root and two 
square roots), or explicitly proving that there exists a solution to the inverse Galois problem 
for 𝑆𝑛 for every 𝑛 ≥ 5, so that it may be confirmed that no algebraic formula exists for 
polynomial equations higher than a quintic. 
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Appendix A: Definitions and Notations 
The definitions of certain terminologies and notations used in my essay are listed below: 

A.1: Groups 

A group is a set 𝐺 equipped with a binary operation19 such that for 𝑔, 𝑔′, 𝑔′′ ∈ 𝐺, 
(1) 𝑔𝑔′ ∈ 𝐺; 
(2) 𝑔(𝑔′𝑔′′) = (𝑔𝑔′)𝑔′′; 
(3) 𝑒 ∈ 𝐺 where 𝑔𝑒 = 𝑒𝑔 = 𝑔; 
(4) 𝑔−1 ∈ 𝐺 where 𝑔𝑔−1 = 𝑒. 

The identity (group), denoted {𝑒}, is the unique group up to isomorphism of order 120 that 
only consists of the identity. 

The order of a group 𝐺, denoted |𝐺|, is the number of elements in 𝐺. 

Let 𝑔 ∈ 𝐺. The smallest possible non-zero 𝑛 for which 𝑔𝑛 = 𝑒 is referred to as the order of 
the element 𝑔. 

If 𝐺 is a group and 𝑔 ∈ 𝐺, then 𝑔𝑛 = 𝑔𝑔⋯𝑔⏟    
𝑛 times

. Similarly, if 𝜙 is a function, then 𝜙𝑛 =

𝜙 ∘ 𝜙 ∘ ⋯ ∘ 𝜙⏟        
𝑛 times

.  

Two groups 𝐺 and 𝐻 are homomorphic if there exists a homomorphism, defined as a 
function 𝜙 ∶ 𝐺 → 𝐻 such that for 𝑔, 𝑔′ ∈ 𝐺, 

𝜙(𝑔𝑔′) = 𝜙(𝑔)𝜙(𝑔′) 
This condition is dubbed the ‘homomorphism property’. 

Two groups are isomorphic, denoted 𝐺 ≅ 𝐻, when there exists a bijective homomorphism 
𝜙 ∶ 𝐺 → 𝐻.  

ℤ𝑛 ≅ ⟨𝑎⟩ = {𝑎
𝑘|0 ≤ 𝑘 ≤ 𝑛 − 1} where 𝑎𝑛 = 𝑒 is the cyclic group of order 𝑛, and it is said to 

be generated by 𝑎. Every subgroup of ℤ𝑛 is cyclic of order dividing 𝑛21. 

ℤ𝑛
× ≅ {gcd(𝑛, 𝑘) = 1|0 ≤ 𝑘 ≤ 𝑛 − 1} with multiplication modulo 𝑛 as the operation is the 

multiplicative group (of integers modulo 𝒏).  

A group 𝐺 is abelian if for 𝑔, 𝑔′ ∈ 𝐺, 𝑔𝑔′ = 𝑔′𝑔. 

 
19 The binary operation is usually omitted in algebraic expressions in a manner similar to products. 
20 Because any group 𝐺 must consist of the identity 𝑒, which already makes |𝐺| = 1. 
21 See Proposition 22 for a proof. 
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Let 𝐺 be a group and 𝑁 ⊆ 𝐺. If for every 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺, 

𝑔𝑛𝑔−1 ∈ 𝑁22 
then 𝑁 is a normal subgroup of 𝐺, denoted 𝑁 ⊴ 𝐺23. 

A group 𝐺 is simple if the only normal proper subgroup of 𝐺 is the identity. 

A (left) coset of a subgroup 𝐻 ⊆ 𝐺 is defined as a set 𝑔𝐻 ≔ {𝑔ℎ|ℎ ∈ 𝐻} for any 𝑔 ∈ 𝐺. 

Let 𝑁 ⊴ 𝐺. 𝐺/𝑁 is a quotient group, defined to be the group of all left cosets of 𝑁 with 
operation, for 𝑔, 𝑔′ ∈ 𝐺, defined as: 

(𝑔𝑁)(𝑔′𝑁) = (𝑔𝑔′)𝑁24 

A (Jordan-Hölder) decomposition series for a group 𝐺 refers to a tower of groups 
{𝑒} ≔ 𝐻0 ⊲ 𝐻1 ⊲ 𝐻2 ⊲ ⋯ ⊲ 𝐻𝑛 ≔ 𝐺 

where each 𝐻𝑖+1/𝐻𝑖 is simple and also called the (composition) factors of 𝐺. They are 
unique up to permutation25. 

A group is solvable if all its factors are abelian, or equivalently, cyclic26. 

A.2: Fields and Extensions 

A field is a set 𝐹 equipped with the binary operations addition ‘+’ and multiplication ‘×’ 
such that for 𝑎, 𝑏 ∈ 𝐹, 
(1) 𝑎 + 𝑏 ∈ 𝐹, 𝑎𝑏 ≔ 𝑎 × 𝑏 ∈ 𝐹; 
(2) 0, 1 ∈ 𝐹 where 𝑎 + 0 = 𝑎 and 𝑎 × 1 = 𝑎; 
(3) −𝑎, 𝑎−1 ∈ 𝐹 where 𝑎 + (−𝑎) = 0 and 𝑎𝑎−1 = 1. 
(4) + and × are commutative and associative, and × distributes over +.27 

Let 𝐹 ⊆ 𝐸 be two fields. Then 𝐸/𝐹 is a field extension, and 𝐸 is an extension of 𝐹. 

Let 𝐸/𝐹 be a field extension. Then 𝐸 is a vector space over 𝐹28. [𝐸 ∶ 𝐹], denoting the degree 
of the field extension, is the dimension of this vector space. It is multiplicative29.  

 
22 Alternatively, 𝑔−1𝑛𝑔 ∈ 𝑁, obtained by replacing 𝑔 → 𝑔−1 ∈ 𝐺. 
23 A normal proper subgroup is denoted 𝑁 ⊲ 𝐺. 
24 For verifying that the operation is well-defined, see Proposition 23. 
25 Baumslag, B. (2006). A Simple Way of Proving the Jordan-Hölder-Schreier Theorem. The American 
Mathematical Monthly, 113(10), 933–935. https://doi.org/10.1080/00029890.2006.11920381 
26 By Proposition 10, any non-cyclic abelian group must have a cyclic (proper) subgroup, which as argued in 
Section 1.3, must be normal, meaning that such a group cannot be simple. 
27 Checking through all conditions reveals that ℚ, ℝ, and ℂ are fields. 
28 May be verified by checking that 𝐸 satisfies all the eight vector space axioms with scalar field 𝐹. 
29 See Proposition 24 for details. 

https://doi.org/10.1080/00029890.2006.11920381
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If 𝐹 is a field, then 𝐹(𝑎), read ‘𝐹 adjoin 𝑎’, is a simple extension of 𝐹, and is the smallest 
field containing both 𝐹 and 𝑎. 

Let 𝐹 ⊆ 𝐸 be two fields. If 
𝐹 ≔ 𝐹0 ⊆ 𝐹1 ⊆ ⋯ ⊆ 𝐹𝑛 = 𝐸 

for finite 𝑛 where each 𝐹𝑖+1 = 𝐹𝑖( √𝑎𝑖
𝑚𝑖 )30 and 𝑎𝑖 ∈ 𝐹𝑖, then 𝐸/𝐹 is a radical extension. 

Let 𝜁𝑛 ≔ e2𝜋𝑖/𝑛 ∈ 𝐹. Then the simple radical extension 𝐹(√𝑎𝑛 )/𝐹 is Kummer.31  

Let 𝐹 be a field not containing 𝜁𝑛. Then 𝐹(𝜁𝑛)/𝐹 is cyclotomic. 

Two fields 𝐸 and 𝐹 are homomorphic if there exists a homomorphism, defined as a 
function 𝜙 ∶ 𝐸 → 𝐹 such that for 𝑥, 𝑦 ∈ 𝐸, 

{
𝜙(𝑥 + 𝑦) = 𝜙(𝑥) + 𝜙(𝑦)

𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦)
 

This condition is dubbed the ‘homomorphism property’. 

Two fields 𝐸 and 𝐹 are isomorphic, denoted 𝐸 ≅ 𝐹, when there exists a bijective 
homomorphism 𝜙 ∶ 𝐸 → 𝐹. 

An automorphism of a field 𝐹 is defined as an isomorphism 𝜙 ∶ 𝐹 → 𝐹. 

The Galois group of a field extension 𝐸/𝐹, denoted Gal(𝐸/𝐹), is defined as the group of 
automorphisms 𝜙 of 𝐸 such that 𝜙(𝑥) = 𝑥 for 𝑥 ∈ 𝐹, with composition ‘∘’ as the operation.  

If 𝜙 ∈ 𝐺 where 𝐺 is a Galois group of some field extension 𝐸/𝐹, then 𝜙 fixes an element 𝑥 ∈
𝐸 if 𝜙(𝑥) = 𝑥, or a field 𝐹 if it fixes every element of 𝐹. If every 𝜙 ∈ 𝐺 fixes 𝐹, then 𝐺 is also 
said to fix 𝐹. 

Let 𝐹 ⊆ 𝐾 ⊆ 𝐸, and 𝜙 ∈ Gal(𝐸/𝐹). Then 𝜙|𝐾 is the function obtained by restricting the 
domain of 𝜙 to 𝐾. 

Let 𝐸/𝐹 be a field extension, and 𝐻 ⊆ Gal(𝐸/𝐹). Then 𝐸𝐻  is the largest subfield of 𝐸 fixed 
by 𝐻.32 

𝐸/𝐹 is a Galois extension if 𝐹 = 𝐸Gal(𝐸/𝐹). 

 
30 I deliberately do not define 𝐹𝑖+1 = 𝐹𝑖(𝛼) where 𝛼𝑚𝑖 ∈ 𝐹𝑖; otherwise 𝐹(𝜁𝑛) for any 𝑛 is a ‘radical extension’, 
and the framework in my essay would have assumed automatically that 𝜁𝑛  has an algebraic expression. 
31 Every Kummer extension is also Galois since 𝐹(√𝑎𝑛 ) contains all the roots of 𝑥𝑛 − 𝑎, hence it is its splitting 
field over 𝐹. 
32 In other words, if 𝑧 ∈ 𝐸 is fixed by 𝐻, then 𝑧 ∈ 𝐸𝐻. Otherwise, if 𝑧 ∉ 𝐸𝐻  is fixed by 𝐻, then 𝐸𝐻(𝑧) ⊃ 𝐸𝐻  is also 
fixed by 𝐻, since any 𝑤 ∈ 𝐸𝐻(𝑧) may be written 𝑤 = 𝑓(𝑧) for some 𝑓 ∈ 𝐸𝐻[𝑥], and for any 𝜙 ∈ 𝐻, 𝜙(𝑤) =
𝜙(𝑓(𝑧)) = 𝑓(𝜙(𝑧)) = 𝑓(𝑧) = 𝑤, hence contradiction. 
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A.3. Polynomials 

A ring is a set 𝑅 equipped with the binary operations addition ‘+’ and multiplication ‘×’ 
such that for 𝑎, 𝑏 ∈ 𝑅, 
(1) 𝑎 + 𝑏 ∈ 𝑅, 𝑎𝑏 ≔ 𝑎 × 𝑏 ∈ 𝑅; 
(2) 0, 1 ∈ 𝑅 where 𝑎 + 0 = 𝑎 and 𝑎 × 1 = 𝑎; 
(3) −𝑎 ∈ 𝐹 where 𝑎 + (−𝑎) = 0; 
(4) + and × are commutative and associative, and × distributes over +.33 

If 𝑅 is a ring, then 𝑅[𝑥1, 𝑥2, ⋯ , 𝑥𝑚] is the ring of all multivariate polynomials in 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 

with coefficients in 𝑅34. 

A polynomial is (ir)reducible over a ring 𝑅 if it can(not) be expressed as the product of two 
non-constant polynomials in 𝑅[𝑥].  

The minimal polynomial 𝑓 of some 𝑧 over a field 𝐹 is defined as the unique35 polynomial 
with leading coefficient 1 of smallest degree in 𝐹[𝑥] of which 𝑥 is a root. It then divides any 
𝑔 ∈ 𝐹[𝑥] with 𝑥 as a root36. 𝑓 is also irreducible37 and has distinct roots38. 

Let 𝐹 be a field, and 𝑓 ∈ 𝐹[𝑥]. 𝐿 is the splitting field of 𝑓 over 𝐹 if it is the smallest 

extension of 𝐹 that contains all roots of 𝑓39.  

A polynomial splits over a field 𝐹 if all its roots are in 𝐹. 

Let 𝐹 be a field. The Galois group of a polynomial 𝑓 ∈ 𝐹[𝑥] refers to Gal(𝐿/𝐹), where 𝐿 is 
the splitting field of 𝑓 over 𝐹. 

A polynomial in 𝑅[𝑥] is solvable by radicals if there exists an algebraic expression for its 
roots involving the algebraic operations and numbers in 𝑅. 

A permutation on a finite set 𝒮 is a bijective function 𝜙 ∶ 𝒮 → 𝒮.  

 
33 Every field is also a ring. Checking through all conditions reveals that ℤ is a ring. 
34 Thus 𝑅[𝑥] refers to the ring of all univariate polynomials in 𝑥 with coefficients in 𝑅. 
35 See Proposition 25 for a proof. 
36 By the division algorithm, 𝑔 = 𝑓𝑞 + 𝑟, where 𝑞, 𝑟 ∈ 𝑅[𝑥] and deg 𝑟 < deg 𝑓. Substituting 𝛼, 𝑔(𝛼) =
𝑓(𝛼)𝑞(𝛼) + 𝑟(𝛼) = 𝑟(𝛼) = 0, thus 𝑟(𝑥) = 0 by minimality and 𝑔 is divisible by 𝑓. 
37 Otherwise 𝑥 is a root of a polynomial in 𝑅[𝑥] of lower degree (a factor of 𝑓) and 𝑓 will not be a minimal 
polynomial. 
38 See Proposition 26 for a proof. 
39 By definition, then, 𝐿 = 𝐹(𝑟1, 𝑟2, ⋯ , 𝑟𝑛) where the 𝑟𝑖’s are the roots of 𝑓.  
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Appendix B: Supplementary Proofs 
Below, I provide additional proofs for the lemmas stated in the essay, and verify the 
assumptions made in the definitions in Appendix A. 

B.1: Proofs of Lemmas 

Proof (Lemma 1). By construction, 𝑓(𝑥) = 0, and by the homomorphism property, 
𝜙(𝑓(𝑥)) = 𝑓(𝜙(𝑥)) = 0 

Thus 𝜙(𝑥) is also a root of 𝑓. QED. 

Proof (Lemma 2, Statement 1). Let 𝑛 = deg 𝑓. I claim that any 𝛼𝑘 for 𝑘 ≥ 𝑛 may be written 
as a polynomial of degree less than 𝑛 in 𝛼 with coefficients in 𝐹. For the base case 𝑘 = 𝑛, 
since 𝑓(𝛼) = 𝛼𝑛 + ∑ 𝑐𝑖𝛼

𝑖𝑛−1
𝑖=0 = 0 where 𝑐𝑖 ∈ 𝐹, I can write 

𝛼𝑛 = −∑𝑐𝑖𝛼
𝑖

𝑛−1

𝑖=0

= 𝑔(𝛼) 

for some 𝑔 ∈ 𝐹[𝑥] with deg 𝑔 < 𝑛. For the inductive step, assume 𝛼𝑘 = ∑ 𝑑𝑖𝛼
𝑖𝑛−1

𝑖=0  where 
𝑑𝑖 ∈ 𝐹. Thus 

𝛼𝑘+1 = 𝛼(𝛼𝑘) = 𝛼∑𝑑𝑖𝛼
𝑖

𝑛−1

𝑖=0

=∑𝑑𝑖𝛼
𝑖+1

𝑛−1

𝑖=0

=∑𝑑𝑖−1𝛼
𝑖

𝑛

𝑖=1

 

= ∑𝑑𝑖−1𝛼
𝑖

𝑛−1

𝑖=1

+ 𝑑𝑛−1𝛼
𝑛 = ∑𝑑𝑖−1𝛼

𝑖

𝑛−1

𝑖=1

− 𝑑𝑛−1∑𝑐𝑖𝛼
𝑖

𝑛−1

𝑖=0

 

= −𝑐0𝑑𝑛−1 +∑(𝑑𝑖−1 − 𝑐𝑖𝑑𝑛−1)𝛼
𝑖

𝑛−1

𝑖=1

= 𝑔(𝛼) 

for some 𝑔 ∈ 𝐹[𝑥] since 𝑐𝑖 , 𝑑𝑖 ∈ 𝐹 and 𝐹 is closed under addition and multiplication. 
Clearly deg 𝑔 < 𝑛, thus proven.  

Now, consider the form of 𝐹(𝛼). Consider 
𝐸 = {𝑓(𝛼)|𝑓 ∈ 𝐹[𝑥], deg 𝑓 < 𝑛} 

First, I prove that 𝐸 is a field. It is closed under addition, since the sum of any polynomial in 
𝛼 with degree less than 𝑛 remain so, and is hence in 𝐸. For multiplication, the product of 
two polynomials in 𝛼 is another polynomial in 𝛼, which, by the claim above, may be 
rewritten as a polynomial with degree less than 𝑛, and is hence in 𝐸. Additive inverses of 
polynomials of degree less than 𝑛 remain so, hence in 𝐸; and for multiplicative inverses, let 
𝑔 be the minimal polynomial of any 𝛽 ∈ 𝐸 over 𝐹. Without loss of generality, let 𝑟1 ≔
𝛽, 𝑟2, ⋯ , 𝑟𝑗  be the roots of 𝑔 in 𝐸, and 𝑠 the product of those not in 𝐸. Thus 

𝑔(𝑥) = (𝑥 − 𝑟1)(𝑥 − 𝑟2)⋯ (𝑥 − 𝑟𝑗)ℎ(𝑥) 
where ℎ ∈ 𝐸[𝑥]. Notice that by Vieta’s formulae, 𝑟1𝑟2⋯𝑟𝑗𝑠 ∈ 𝐹 and 𝑠 ∈ 𝐸, since they are the 
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constant terms of 𝑔 ∈ 𝐹[𝑥] and ℎ ∈ 𝐸[𝑥]. 

∴
1

𝛽
=
1

𝑟1
= (

1

𝑟1𝑟2⋯𝑟𝑗𝑠
) 𝑟2𝑟3⋯𝑟𝑗𝑠 ∈ 𝐸 

since 𝐹 and 𝐸 are closed under multiplication. Therefore 𝐸 is a field, and 𝐹(𝛼) ⊆ 𝐸. But by 
closure, any field containing 𝐹 and 𝛼 must contain any polynomial in 𝛼 with coefficients in 
𝐹, whose degree by the claim above may be taken to be less than 𝑛. Thus 𝐸 ⊆ 𝐹(𝛼), which 
implies 𝐸 = 𝐹(𝛼). 

Let {1, 𝛼, 𝛼2, ⋯ , 𝛼𝑛−1} be the basis of the vector space of 𝐹(𝛼) over 𝐹. Clearly they span 
𝐹(𝛼). They are linearly independent, otherwise 𝛼 satisfies a non-zero polynomial of degree 
less than 𝑛 and 𝑓 will not be the minimal polynomial of 𝛼 over 𝐹. Hence, the dimension of 
this vector space is [𝐹(𝛼) ∶ 𝐹] = 𝑛. QED. 

Proof (Lemma 2, Statement 2). Proceed by induction on 𝑚. For the base case 𝑚 = 1, by 
the proof above, for any 𝑧 ∈ 𝐹(𝛼1), there exists 𝑔 ∈ 𝐹[𝑥] where 𝑧 = 𝑔(𝛼1). For the inductive 
step, define 𝐾 = 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚) and consider any element 𝑧 ∈ 𝐾(𝛼𝑚+1). By the proof 
above, I may write 

𝑧 ≔ ∑𝑐𝑖𝛼𝑚+1
𝑖

𝑛−1

𝑖=0

= ∑ℎ𝑖(𝛼1, 𝛼2, ⋯ , 𝛼𝑚)𝛼𝑚+1
𝑖

𝑛−1

𝑖=0

 

by the inductive hypothesis, where 𝑛 = [𝐾(𝛼𝑚+1) ∶ 𝐾], 𝑐𝑖 ∈ 𝐾, and ℎ𝑖 ∈ 𝐹[𝑥1, 𝑥2, ⋯ , 𝑥𝑚]. 

Each term in the sum is a sum of monomials of the form 𝑎𝛼1
𝑘1𝛼2

𝑘2⋯𝛼𝑚
𝑘𝑚𝛼𝑚+1

𝑘𝑚+1  where 𝑎 ∈ 𝐹, 
so this is a polynomial in all 𝛼𝑖’s with coefficients in 𝐹. Thus, there exists 𝑔 ∈
𝐹[𝑥1, 𝑥2, ⋯ , 𝑥𝑚, 𝑥𝑚+1] such that 𝑧 = 𝑔(𝛼1, 𝛼2, ⋯ , 𝛼𝑚, 𝛼𝑚+1). QED. 

Proof (Lemma 2, Statement 3). As proven above, any 𝑧 ∈ 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚) may be written 
𝑧 = 𝑔(𝛼1, 𝛼2, ⋯ , 𝛼𝑚) 

where 𝑔 ∈ 𝐹[𝑥1, 𝑥2, ⋯ , 𝑥𝑚]. Due to the homomorphism property, 
𝜙(𝑧) = 𝜙(𝑔(𝛼1, 𝛼2, ⋯ , 𝛼𝑚)) = 𝑔(𝜙(𝛼1), 𝜙(𝛼2),⋯ , 𝜙(𝛼𝑚)) 

and thus is fully determined by 𝜙(𝛼𝑖)’s for all 1 ≤ 𝑖 ≤ 𝑚. Hence 𝜙 is completely and 
uniquely determined by all 𝜙(𝛼𝑖)’s. QED. 

Proof (Lemma 3, Statement 1). Define 𝐺 = Gal(𝑀/𝐹) and consider 

𝑔(𝑥) ≔∏(𝑥 − 𝜙(𝑧))

𝜙∈𝐺

 

Since 𝜓 ∈ 𝐺 is bijective, by closure and Lemma 1, it permutes the roots of 𝑔, which means 
𝜓(𝑔(𝑥)) only permutes the order of the products and is hence equal to 𝑔(𝑥). Thus, the 
coefficients of 𝑔 are fixed by 𝐺, and since 𝑀/𝐹 is Galois, 𝑔 ∈ 𝐹[𝑥]. Also, by Lemma 1, every 
𝜙(𝑧) within the product must be a root of 𝑓, which means that 𝑔 divides 𝑓. But 𝑓 is 
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irreducible, implying that 𝑓 = 𝑔, and its roots, which by construction are the various 𝜙(𝑧)’s, 
are in 𝑀.  

Proof (Lemma 3, Statement 2). By Lemma 1, 𝑀 is a vector space of dimensionality 𝑚 ≔
[𝑀 ∶ 𝐹] over 𝐹. Let {𝛼1, 𝛼2, ⋯ , 𝛼𝑚} be a basis, so that every 𝑧 ∈ 𝑀 may be written as 𝑧 =
∑ 𝑐𝑖𝛼𝑖
𝑚
𝑖=1  where 𝑐𝑖 ∈ 𝐹, so is in 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚). Hence 𝑀 ⊆ 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚). But since 
𝐹 ⊆ 𝑀 and 𝛼𝑖 ∈ 𝑀 for all 1 ≤ 𝑖 ≤ 𝑚, 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚) ⊆ 𝑀, implying that 𝑀 =
𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚). 

Now I prove that there exists 𝛽 such that 𝑀 = 𝐹(𝛽) by induction on 𝑚. The base case 𝑚 =
1 is trivial, since 𝑀 = 𝐹(𝛼1) and I can pick 𝛽 = 𝛼1. For the inductive step, let 
𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚) = 𝐹(𝛾) for some 𝛾 such that 𝐹(𝛼1, 𝛼2, ⋯ , 𝛼𝑚, 𝛼𝑚+1) = 𝐹(𝛾, 𝛼𝑚+1). I claim 
that I can take 𝛽 = 𝛾 + 𝑐𝛼𝑚+1 for some 𝑐 ∈ 𝐹. Clearly, 𝐹(𝛽) ⊆ 𝐹(𝛾, 𝛼𝑚+1). 

Suppose 𝛾 ∉ 𝐹(𝛽). Then 𝛼𝑚+1 ∉ 𝐹(𝛽), otherwise 𝛾 = 𝛽 − 𝑐𝛼𝑚+1 ∈ 𝐹(𝛽). Now, define 𝑓 
and 𝑔 as the minimal polynomials of 𝛾 and 𝛼𝑚+1 respectively over 𝐹, and let 𝐿 be the 
splitting field of 𝑓𝑔 over 𝐹. For any 𝜙 ∈ Gal(𝐿/𝐹(𝛽)) ⊆ Gal(𝐿/𝐹), then, 

𝛾 + 𝑐𝛼𝑚+1 = 𝛽 = 𝜙(𝛽) = 𝜙(𝛾) + 𝑐𝜙(𝛼𝑚+1) 

∴ 𝑐 =
𝛾 − 𝜙(𝛾)

𝜙(𝛼𝑚+1) − 𝛼𝑚+1
 

Hence, one can pick 𝑐 that does not satisfy this equation to conclude that 𝛾 ∈ 𝐹(𝛽). This 
may be done so by ensuring that 𝑐 is not equal to the expression for any 𝜙 ∈ Gal(𝐿/𝐹) ⊇
Gal(𝐿/𝐹(𝛽)). Hence, 𝛼𝑚+1 = (𝛽 − 𝛾)/𝑐 ∈ 𝐹(𝛽) by closure, and 𝐹(𝛾, 𝛼𝑚+1) ⊆ 𝐹(𝛽), which 
implies 𝐹(𝛽) = 𝐹(𝛾, 𝛼𝑚+1), hence proven. 

I now let 𝑀 = 𝐹(𝛽) and proceed with the proof. By Lemma 2, 𝑛 ≔ [𝑀 ∶ 𝐹] = deg 𝑓 where 𝑓 
is the minimal polynomial of 𝛽 over 𝐹, and without loss of generality let 𝑟1 ≔ 𝛽, 𝑟2, ⋯ , 𝑟𝑛 be 
the roots of 𝑓 (since 𝑓 has distinct roots). By Lemma 1, any 𝜙 ∈ 𝐺 ≔ Gal(𝑀/𝐹) must send 
𝛽 to some 𝑟𝑖. By Lemma 2, the whole automorphism is uniquely determined by 𝜙(𝛽) = 𝑟𝑖, 
so there are at most 𝑛 automorphisms. But since 𝑓 is irreducible, by Proposition 1440, there 
exists 𝜙 ∈ 𝐺 sending 𝛽 to every 𝑟𝑖. Hence there are exactly 𝑛 automorphisms, and 
|Gal(𝑀/𝐹)| = 𝑛 = [𝑀 ∶ 𝐹]. QED. 

Proof (Lemma 3, Statement 3). I first prove that if 𝑀/𝐹 is Galois, then it is the splitting field 
of some 𝑓 ∈ 𝐹[𝑥] over 𝐹. As argued in the proof above, there exists 𝛼 ∈ 𝑀 such that 𝑀 =
𝐹(𝛼). Let 𝑓 be the minimal polynomial of 𝛼 over 𝐹, and 𝐿 its splitting field over 𝐹. Since 𝐿 
contains 𝛼, 𝑀 ⊆ 𝐿. But since 𝑓 is irreducible, as proven, 𝑓 must completely split over 𝑀, so 

 
40 This is not circular. 
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all the roots of 𝑓 are in 𝑀. Hence 𝐿 ⊆ 𝑀. This means that 𝑀 = 𝐿, and is the splitting field of 
𝑓 ∈ 𝐹[𝑥] over 𝐹. 

For the converse direction, pick any 𝑧 ∈ 𝑀 that is not in 𝐹, and let 𝑔 be the minimal 
polynomial of 𝑧 over 𝐹 and 𝐿 the splitting field of 𝑔 over 𝑀. Therefore 𝐿 is the splitting field 
of ℎ ≔ 𝑓𝑔 over 𝐹, and without loss of generality let the roots of ℎ be 𝑧 ≔ 𝑠1, 𝑠2, ⋯ , 𝑠𝑚. I 
construct an automorphism in Gal(𝐿/𝐹) as follows. 

I claim that there exists an isomorphism 𝜎 ∶ 𝐹(𝑠1, 𝑠2, ⋯ , 𝑠𝑛) → 𝐹(𝑠𝜋(1), 𝑠𝜋(2),⋯ , 𝑠𝜋(𝑛)) fixing 
𝐹 such that 𝜎(𝑠𝑖) = 𝑠𝜋(𝑖), where 𝜋 is some permutation on the set {1, 2,⋯ ,𝑚} that does not 
fix 1, and 1 ≤ 𝑛 ≤ 𝑚. Proceed by induction on 𝑛. For the base case, since deg 𝑔 > 1 
(otherwise 𝑔(𝑥) = 𝑥 − 𝑧 ∈ 𝐹[𝑥] implies 𝑧 ∈ 𝐹), 𝑔 has multiple roots, so let 𝑠𝑖 ≠ 𝑠1 = 𝑧 be 
another root of 𝑔. Naturally 𝑔 is the minimal polynomial of both 𝑠1 and 𝑠𝑖 over 𝐹. Let 𝜎 ∶
𝐹(𝑠1) → 𝐹(𝑠𝑖) be a homomorphism fixing 𝐹 such that 𝜎(𝑠1) = 𝑠𝑖. Referring to the proof of 
Lemma 2, I can view 𝐹(𝑠1) and 𝐹(𝑠𝑖) as vector spaces over 𝐹 with the bases 

{1, 𝑠1, 𝑠1
2, ⋯ , 𝑠1

deg𝑔−1
} and {1, 𝑠𝑖, 𝑠𝑖

2, ⋯ , 𝑠𝑖
deg𝑔−1

} respectively, every point in 𝐹(𝑠1) is mapped 

to a distinct point in 𝐹(𝑠𝑖) with the same coordinates, so 𝜎 is an isomorphism. 

For the inductive step, define 𝐾 = 𝐹(𝑠1, 𝑠2, ⋯ , 𝑠𝑛) and 𝐾′ = 𝐹(𝑠𝜋(1), 𝑠𝜋(2),⋯ , 𝑠𝜋(𝑛)). Let 𝑝 be 
the minimal polynomial of 𝑠𝑛+1 over 𝐾 with degree 𝑑. By the inductive hypothesis there 
exists an isomorphism 𝜎 ∶ 𝐾 → 𝐾′ fixing 𝐹 such that 𝜎(𝑠𝑖) = 𝑠𝜋(𝑖) for 1 ≤ 𝑖 ≤ 𝑛. Let 𝑝 be the 
minimal polynomial of 𝑠𝑛+1 over 𝐾. Since 𝑠𝑛+1 is a root of ℎ ∈ 𝐹[𝑥] ⊆ 𝐾[𝑥], it follows that 𝑝 
divides ℎ (since it is a minimal polynomial), so the roots of 𝑝 are the roots of ℎ. Thus, I can 
write 

∑𝑎𝑖𝑥
𝑖

𝑚

𝑖=0

≔ ℎ(𝑥) = 𝑝(𝑥)𝑞(𝑥) ≔ (∑𝑏𝑖𝑥
𝑖

𝑑

𝑖=0

)(∑𝑐𝑖𝑥
𝑖

𝑒

𝑖=0

) ∈ 𝐹[𝑥] 

∴ 𝑎𝑖 =∑𝑏𝑗𝑐𝑖−𝑗

𝑖

𝑗=0

∈ 𝐹 

Now, define 𝑝(𝑥) = ∑ 𝜎(𝑏𝑖)𝑥
𝑖𝑑

𝑖=0  and �̃�(𝑥) = ∑ 𝜎(𝑐𝑖)𝑥
𝑖𝑒

𝑖=0 , both of which are in 𝐾′[𝑥]. 
Notice that 

𝑝(𝑥)�̃�(𝑥) =∑𝜎(𝑏𝑖)𝑥
𝑖

𝑑

𝑖=0

∑𝜎(𝑐𝑖)𝑥
𝑖

𝑒

𝑖=0

=∑∑𝜎(𝑏𝑗)𝜎(𝑐𝑖−𝑗)

𝑖

𝑗=0

𝑥𝑖
𝑚

𝑖=0

=∑𝜎(∑𝑏𝑗𝑐𝑖−𝑗

𝑖

𝑗=0

)𝑥𝑖
𝑚

𝑖=0

 

=∑𝜎(𝑎𝑖)𝑥
𝑖

𝑚

𝑖=0

=∑𝑎𝑖𝑥
𝑖

𝑚

𝑖=0

= ℎ(𝑥) 

since 𝑎𝑖 ∈ 𝐹 is fixed by 𝜎. Hence 𝑝 divides ℎ and its roots are those of ℎ. 
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Now, choose 𝑠𝑘 as a root of 𝑝 with 𝑘 ≠ 𝜋(𝑖) for any 1 ≤ 𝑖 ≤ 𝑛. This is possible, since  

𝑝(𝑠𝜋(𝑖)) =∑𝜎(𝑏𝑗)𝑠𝜋(𝑖)
𝑗

𝑑

𝑗=0

= 𝜎(∑𝑏𝑗𝑠𝑖
𝑗

𝑑

𝑗=0

) = 𝜎(𝑝(𝑠𝑖)) = 0 ⇒ 𝑝(𝑠𝑖) = 0 

and if every root of 𝑝 is 𝑠𝜋(𝑖) for some 1 ≤ 𝑖 ≤ 𝑛, then every root of 𝑝 is 𝑠𝑖 (since both 
polynomials have the same number of roots for their degrees are the same), and 𝑠𝑛+1 
would not be a root, a contradiction. Henceforth, define 𝜋(𝑛 + 1) = 𝑘, so 𝜋 remains a 
permutation; and define 𝜎′ ∶ 𝐾(𝑠𝑛+1) → 𝐾′(𝑠𝑘) as a homomorphism such that 𝜎′(𝑥) =
𝜎(𝑥) for 𝑥 ∈ 𝐾, and 𝜎(𝑠𝑛+1) = 𝑠𝑘. Viewing 𝐾(𝑠𝑛+1) and 𝐾′(𝑠𝑘) as vector spaces over 𝐾 with 
bases {1, 𝑠𝑛+1, 𝑠𝑛+12 , ⋯ , 𝑠𝑛+1

𝑑−1} and {1, 𝑠𝑘, 𝑠𝑘
2, ⋯ , 𝑠𝑘

𝑑−1} respectively, every point in 𝐾(𝑠𝑛+1) is 
mapped to a distinct point in 𝐾′(𝑠𝑘), for its coordinates are transformed under the 
isomorphism 𝜎. So 𝜎′ is bijective and therefore an isomorphism, hence proven. 

Now, apply the claim to 𝑛 = 𝑚. Since 𝐿 = 𝐹(𝑠1, 𝑠2, ⋯ , 𝑠𝑚) = 𝐹(𝑠𝜋(1), 𝑠𝜋(2), ⋯ , 𝑠𝜋(𝑚)) for any 
permutation 𝜋, I can conclude that there exists an automorphism of 𝐿 fixing 𝐹 that does not 
fix 𝑧 = 𝑠1, i.e. there exists 𝜙 ∈ Gal(𝐿/𝐹) such that 𝜙(𝑧) ≠ 𝑧. Now let 𝑟1, 𝑟2,⋯ , 𝑟𝑙 be the roots 
of 𝑓, so that 𝑀 = 𝐹(𝑟1, 𝑟2, ⋯ , 𝑟𝑙). By Lemma 2, 𝑧 = 𝑡(𝑟1, 𝑟2,⋯ , 𝑟𝑙) where 𝑡 ∈ 𝐹[𝑥1, 𝑥2, ⋯ , 𝑥𝑙], 
and 

𝜙(𝑧) = 𝜙(𝑡(𝑟1, 𝑟2, ⋯ , 𝑟𝑙)) = 𝑡(𝜙(𝑟1), 𝜙(𝑟2),⋯ , 𝜙(𝑟𝑙)) 
By Lemma 1, every 𝜙(𝑟𝑖) is another root of 𝑓 which is in 𝑀 (since 𝑀 is a splitting field), so by 
closure, 𝜙(𝑧) ∈ 𝑀. Now, observe that 𝜙|𝑀 is an automorphism of 𝑀 that fixes 𝐹, hence 
𝜙|𝑀 ∈ Gal(𝑀/𝐹) and since 𝜙|𝑀 does not fix 𝑧 ∉ 𝐹, 𝑀Gal(𝑀/𝐹) = 𝐹, therefore 𝑀/𝐹 is Galois. 
QED. 

Proof (Lemma 4). I prove that the mapping 𝐻 → 𝑀𝐻  is bijective. For injectivity, if 𝐻 ≠ 𝐻′ are 

two distinct subgroups, suppose for contradiction that 𝑀𝐻 = 𝑀𝐻
′
. Since every element of 

𝐻 fixes 𝑀𝐻
′
, 𝐻 ⊆ 𝐻′. Apply the same argument and conclude that 𝐻′ ⊆ 𝐻, which means 

𝐻 = 𝐻′, a contradiction. For surjectivity, since 𝑀/𝐹 is Galois, by Lemma 3, 𝑀 must be the 
splitting field of some 𝑓 ∈ 𝐹[𝑥] ⊆ 𝐾[𝑥] over 𝐹 ⊆ 𝐾 for some intermediate subfield 𝐾, so it is 
also the splitting field of 𝑓 over 𝐾, meaning that 𝑀/𝐾 is Galois. Hence 𝐾 = 𝑀Gal(𝑀/𝐾) and is 
mapped from Gal(𝑀/𝐾) ⊆ Gal(𝑀/𝐹). Therefore, the mapping is bijective and the 
correspondence holds. QED. 

Proof (Lemma 5, Statement 1). I first prove that if 𝐾/𝐹 is Galois, then 𝑁 ⊴ 𝐺. Because 𝐾/𝐹 
is Galois, every 𝑧 ∈ 𝐾 is a root of its minimal polynomial 𝑓 ∈ 𝐹[𝑥] which by Lemma 3 splits 
over 𝐾 for it is irreducible. By Lemma 1, then, any 𝜙 ∈ 𝐺 must send 𝑧 to another root of 𝑓, 
which is in 𝐾, meaning that 𝜙(𝑧) ∈ 𝐾. Thus, for any 𝜓 ∈ 𝑁 and 𝜙 ∈ 𝐺, 

(𝜙−1 ∘ 𝜓 ∘ 𝜙)(𝑧) = (𝜙−1 ∘ 𝜙)(𝑧) = 𝑧 
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where the first equality results since 𝜓 fixes 𝜙(𝑧) ∈ 𝐾. Hence 𝜙−1 ∘ 𝜓 ∘ 𝜙 fixes 𝐾 and is in 
𝑁, therefore 𝑁 ⊴ 𝐺. 

For the converse direction, let 𝑧 ∈ 𝐾. If 𝑧 ∉ 𝐹, pick 𝜙 ∈ 𝐺 such that 𝜙(𝑧) ≠ 𝑧. This is 
possible since otherwise, 𝑀𝐺 ⊇ 𝐹(𝑧) ⊃ 𝐹 and 𝑀/𝐹 is not Galois. Since 𝑁 ⊴ 𝐺, for any 𝜓 ∈
𝑁, 

(𝜙−1 ∘ 𝜓 ∘ 𝜙)(𝑧) = 𝑧 → (𝜓 ∘ 𝜙)(𝑧) = 𝜙(𝑧) 
As argued before, if 𝑀/𝐹 is Galois, so is 𝑀/𝐾, implying that 𝜙(𝑧) ∈ 𝐾. Thus, 𝜙|𝐾 ∶ 𝐾 → 𝐾 is 
an automorphism of 𝐾 that fixes 𝐹, hence 𝜙|𝐾 ∈ Gal(𝐾/𝐹). But 𝜙 and hence 𝜙|𝐾  does not 
fix 𝑧 ∉ 𝐹, so 𝐾Gal(𝐾/𝐹) = 𝐹, and 𝐾/𝐹 is Galois. QED. 

Proof (Lemma 5, Statement 2). Consider the mapping 𝜎 ∶ Gal(𝐾/𝐹) → 𝐺/𝑁 defined by 
𝜎(𝜒) = 𝜙𝑁 

for 𝜒 ∈ Gal(𝐾/𝐹), where 𝜙 ∈ 𝐺. Pick 

𝜙(𝑧) = {
𝜒(𝑧) 𝑧 ∈ 𝐾,
𝑧 otherwise

 

so that 𝜒 = 𝜙|𝐾. First check that it satisfies the homomorphism property; if 𝜒, 𝜒′ ∈
Gal(𝐾/𝐹), 

𝜎(𝜒𝜒′) = (𝜒𝜒′)𝑁 = (𝜒𝑁)(𝜒′𝑁) = 𝜎(𝜒)𝜎(𝜒′) 

Next I prove that the mapping is bijective. For injectivity, if 𝜒 ≠ 𝜒′ is mapped to 𝜙𝑁 = 𝜙′𝑁, 
then 𝜙′ = 𝜙 ∘ 𝜓 for some 𝜓 ∈ 𝑁, so 𝜓 = 𝜙−1 ∘ 𝜙′. If 𝑧 ∉ 𝐾, 

𝜓(𝑧) = (𝜙−1 ∘ 𝜙′)(𝑧) = 𝜙−1(𝑧) = 𝑧 
But 𝜓 already fixes 𝐾, so 𝜓(𝑧) = 𝑧 for every 𝑧 ∈ 𝑀. This means that 𝜙′ = 𝜙 ∘ 𝜓 = 𝜙, which 
necessarily means 𝜒 = 𝜙|𝐾 = 𝜙′|𝐾 = 𝜒′, a contradiction. 

For surjectivity, for every 𝜙 ∈ 𝐺, there exists 𝜙′ ∈ 𝐺 such that 

𝜙′(𝑧) = {
𝜙(𝑧) 𝑧 ∈ 𝐾,
𝑧 otherwise

 

since it is also an automorphism of 𝑀 that fixes 𝐹. By closure, there exists 𝜓 ∈ 𝐺 such that 
𝜙 = 𝜙′ ∘ 𝜓. If 𝑧 ∈ 𝐾, 

𝜓(𝑧) = (𝜙′
−1
∘ 𝜙)(𝑧) = 𝑧 

which means 𝜓 ∈ 𝑁 for it fixes 𝐾. Hence, any coset 𝜙𝑁 = (𝜙′ ∘ 𝜓)𝑁 = 𝜙′𝑁, and is 
therefore mapped from 𝜒 = 𝜙′|𝐾 ∈ Gal(𝐾/𝐹), since it is an automorphism of 𝐾 that fixes 𝐹. 
Thus, the map is bijective, and therefore the isomorphism holds. QED. 

Proof (Lemma 6, Statement 1). Every 𝑔 ∈ 𝐺 is in the coset 𝑔𝐻, for 𝑒 ∈ 𝐻 implies 𝑔 = 𝑔𝑒 ∈
𝑔𝐻. Also, suppose for contradiction that there exist two distinct cosets 𝑔𝐻 ≠ 𝑔′𝐻 that are 
not disjoint. Then there exists ℎ, ℎ′ ∈ 𝐻 such that 

𝑔ℎ = 𝑔′ℎ′ 
𝑔−1𝑔′ = ℎℎ′

−1
≔ ℎ′′ ∈ 𝐻 
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by closure. Therefore, 𝑔′ = 𝑔ℎ′′, which means 𝑔′𝐻 = (𝑔ℎ′′)𝐻 = 𝑔𝐻, hence contradiction. 
Thus, every element of 𝐺 belongs to one and only one coset of 𝐻, and 𝐺 can be partitioned 
into the cosets of 𝐻. The size of all cosets of 𝐻 is |𝐻|, meaning that |𝐺| is divisible by |𝐻|. 
QED. 

Proof (Lemma 6, Statement 2). By the proof above, 𝐺 can be partitioned into the cosets of 
𝑁, which all have sizes |𝑁|. Therefore, there are exactly |𝐺|/|𝑁| cosets. By definition, since 
|𝐺/𝑁| is the group of all cosets of 𝑁, |𝐺/𝑁| = |𝐺|/|𝑁|. QED. 

Proof (Lemma 17). Since 𝐺 is solvable, write a full decomposition series 
{𝑒} ≔ 𝐺0 ⊲ 𝐺1 ⊲ 𝐺2 ⊲ ⋯ ⊲ 𝐺𝑚 ≔ 𝐺 

Define 𝐻𝑖 ≔ 𝐻 ∩ 𝐺𝑖. Notice that 𝐻𝑖 ⊲ 𝐻𝑖+1 since for any ℎ ∈ 𝐻𝑖 ⊆ 𝐺𝑖  and 𝑔 ∈ 𝐻𝑖+1 ⊆ 𝐺𝑖+1, 
because 𝐺𝑖 ⊲ 𝐺𝑖+1, 𝑔ℎ𝑔−1 ∈ 𝐺𝑖; and since 𝑔, ℎ ∈ 𝐻, by closure, 𝑔ℎ𝑔−1 ∈ 𝐻, therefore 
𝑔ℎ𝑔−1 ∈ 𝐻 ∩ 𝐺𝑖. Hence I can write 

{𝑒} ≔ 𝐻0 ⊲ 𝐻1 ⊲ 𝐻2 ⊲ ⋯ ⊲ 𝐻𝑚 ≔ 𝐻 
which may not be a full decomposition series. I need to prove that each 𝐻𝑖+1/𝐻𝑖 is abelian, 
so that after refining this series, each composition factor, as factors of 𝐻𝑖+1/𝐻𝑖, are too 
abelian. To do so, let 𝑥, 𝑦 ∈ 𝐻𝑖+1 ⊆ 𝐺𝑖+1. Then 

(𝑥𝐻𝑖)(𝑦𝐻𝑖) = (𝑥𝑦)𝐻𝑖 = (𝑥𝑦)(𝐻 ∩ 𝐺𝑖) = (𝑥𝑦)𝐻 ∩ (𝑥𝑦)𝐺𝑖 = (𝑥𝑦)𝐻 ∩ ((𝑥𝐺𝑖)(𝑦𝐺𝑖)) 

= (𝑦𝑥)𝐻 ∩ ((𝑦𝐺𝑖)(𝑥𝐺𝑖)) = (𝑦𝑥)𝐻 ∩ (𝑦𝑥)𝐺𝑖 = (𝑦𝑥)(𝐻 ∩ 𝐺𝑖) = (𝑦𝑥)𝐻𝑖 = (𝑦𝐻𝑖)(𝑥𝐻𝑖) 
where the first equality in the second line results since 𝐺𝑖+1/𝐺𝑖 is abelian, and because 
𝑥, 𝑦 ∈ 𝐻, (𝑥𝑦)𝐻 = (𝑦𝑥)𝐻 = 𝐻. Therefore 𝐻𝑖+1/𝐻𝑖 is abelian, and 𝐻 is a solvable group. 
QED. 

Proof (Lemma 20). Suppose for contradiction that a polynomial 

𝑓(𝑥) = ∑𝑎𝑘𝑥
𝑘

𝑛

𝑘=0

∈ ℤ[𝑥] 

satisfies Eisenstein’s criterion yet is reducible in ℚ. Without loss of generality suppose that 
𝑓 is primitive, i.e. the greatest common divisor of all 𝑎𝑘’s is 1 (otherwise, divide 𝑓 by that 
greatest common divisor to obtain primitive 𝑓′, and if 𝑓′ is reducible in ℚ then so is 𝑓). That 
means there exists non-constant polynomials 

𝑝(𝑥) = ∑𝑏𝑘𝑥
𝑘

𝑟

𝑘=0

, 𝑞(𝑥) = ∑𝑐𝑘𝑥
𝑘

𝑠

𝑘=0

 

both of which are in ℚ[𝑥], where 𝑟 = deg 𝑝, 𝑠 = deg 𝑞, and 𝑛 = 𝑟 + 𝑠, such that 𝑓(𝑥) =
𝑝(𝑥)𝑞(𝑥). First, I show that 𝑝 and 𝑞 can be taken to be in ℤ[𝑥] without loss of generality. 

Let 𝑛𝑝 and 𝑛𝑞  be the least common multiples of the denominators of all 𝑏𝑘’s and 𝑐𝑘’s 
respectively, such that 
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𝑝(𝑥) ≔ 𝑛𝑝𝑝(𝑥) = ∑ �̃�𝑘𝑥
𝑘

𝑟

𝑘=0

, �̃�(𝑥) = 𝑛𝑞𝑞(𝑥) = ∑ �̃�𝑘𝑥
𝑘

𝑠

𝑘=0

 

are both in ℤ[𝑥] and primitive. This means that 
𝑓(𝑥) ≔ 𝑛𝑝𝑛𝑞𝑓(𝑥) = [𝑛𝑝𝑝(𝑥)][𝑛𝑞𝑞(𝑥)] = 𝑝(𝑥)�̃�(𝑥) 

Next, I show that 𝑓 is primitive too. Suppose for contradiction that there exists a prime 𝑝′ 
dividing all coefficients in 𝑔, and let �̃�𝑖 and �̃�𝑗  be coefficients in 𝑝 and �̃� respectively so that 

𝑝′ divides �̃�𝑘 for all 0 ≤ 𝑘 < 𝑖 and �̃�𝑘 for all 0 ≤ 𝑘 < 𝑗, but not �̃�𝑖 or �̃�𝑗. Then the coefficient of 

𝑥𝑖+𝑗 in 𝑓 is 

�̃�𝑖+𝑗 ≔∑�̃�𝑘�̃�𝑖+𝑗−𝑘

𝑖+𝑗

𝑘=0

= �̃�𝑖�̃�𝑗 +∑�̃�𝑘�̃�𝑖+𝑗−𝑘

𝑖−1

𝑘=0

+∑�̃�𝑖+𝑗−𝑘�̃�𝑘

𝑗−1

𝑘=0

 

which must be divisible by 𝑝′ by the assumption. But both sums are divisible by 𝑝′ since all 
�̃�𝑘’s and �̃�𝑘’s within the sums are, and �̃�𝑖�̃�𝑗  by construction is not, which means that 𝑝′ does 

not divide �̃�𝑖+𝑗, hence contradiction. This means that 𝑓 is primitive too, but so is 𝑓, so 
𝑛𝑝𝑛𝑞 = ±1, and 𝑓(𝑥) = ±𝑝(𝑥)�̃�(𝑥) is therefore reducible over ℤ. 

I now proceed with the proof. Since 𝑝 but not 𝑝2 divides 𝑎0 = 𝑏0𝑐0, without loss of 
generality, I may proceed by assuming that 𝑝 divides 𝑏0 but not 𝑐0. Now, I claim that 𝑝 
divides 𝑏𝑘 for all 0 ≤ 𝑘 ≤ 𝑟 < 𝑛 and proceed by strong induction. The base case 𝑘 = 0 is 
true for 𝑏0 is assumed to be divisible by 𝑝. For the inductive step, since 

𝑎𝑘 =∑𝑏𝑖𝑐𝑘−𝑖

𝑘

𝑖=0

= 𝑏𝑘𝑐0 +∑𝑏𝑖𝑐𝑘−𝑖

𝑘−1

𝑖=0

 

∴ 𝑏𝑘𝑐0 = 𝑎𝑘 −∑𝑏𝑖𝑐𝑘−𝑖

𝑘−1

𝑖=0

 

which is divisible by 𝑝 since 𝑝 divides 𝑎𝑘 as well as all 𝑏𝑖 for 0 ≤ 𝑖 < 𝑘 by the inductive 
hypothesis. Since 𝑝 does not divide 𝑐0, it must divide 𝑏𝑘, proving the claim. However, 𝑝 
does not divide 𝑎𝑛 = 𝑏𝑟𝑐𝑠, so it cannot divide 𝑏𝑟, hence contradiction. QED. 

B.2. Proofs of Assumptions in Appendix A 

Proposition 22. If 𝐺 = ⟨𝑎⟩ ≅ ℤ𝑛, then every 𝐻 ⊆ 𝐺 is cyclic of order 𝑚 that divides 𝑛. 

Proof. Let 𝑞 be the smallest non-zero integer such that 𝑎𝑞 ∈ 𝐻. If 𝑎𝑘 ∈ 𝐻, then 
𝑎𝑘 = 𝑎𝑚𝑞+𝑟 = 𝑎𝑚𝑞𝑎𝑟 

where 𝑚, 𝑟 ∈ ℤ and 0 ≤ 𝑟 < 𝑞 by the division algorithm. Since 𝑎𝑞 ∈ 𝐻, so is any 𝑎−𝑚𝑞, the 
inverse of 𝑎𝑚𝑞 = (𝑎𝑞)𝑚. Then 

𝑎−𝑚𝑞𝑎𝑘 = 𝑎𝑟 ∈ 𝐻 

by closure. But since 𝑟 < 𝑞, 𝑟 = 0, and 𝑎𝑘 = 𝑎𝑚𝑞 = (𝑎𝑞)𝑚. Since it is also a group, there 
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must exist an integer 𝑝 such that (𝑎𝑞)𝑝 = 𝑎𝑝𝑞 = 𝑒 = 𝑎𝑛, which also implies 𝑛 = 𝑝𝑞. Thus, 
𝐻 = ⟨𝑎𝑞⟩ is cyclic of order 𝑚 that divides 𝑛. QED. 

Proposition 23. If 𝑁 ⊴ 𝐺, then the operation on 𝐺/𝑁 is well-defined. 

Proof. Suppose two cosets in 𝐺/𝑁 may be represented differently by 𝑔𝑁 = 𝑔′𝑁. Thus, 
there exists 𝑛 ∈ 𝑁 such that 𝑔′ = 𝑔𝑛. Now consider another coset ℎ𝑁 ∈ 𝐺/𝑁, and for the 
operation to be well-defined, I need (𝑔𝑁)(ℎ𝑁) = (𝑔′𝑁)(ℎ𝑁). Since 𝑁 ⊴ 𝐺, ℎ−1𝑛ℎ ≔ 𝑛′ ∈

𝑁, which means 𝑛ℎ = ℎ𝑛′. Thus, 
(𝑔′𝑁)(ℎ𝑁) = (𝑔′ℎ)𝑁 = (𝑔𝑛ℎ)𝑁 = (𝑔ℎ𝑛′)𝑁 = (𝑔ℎ)𝑁 = (𝑔𝑁)(ℎ𝑁) 

QED. 

Proposition 24. Let 𝐹 ⊆ 𝐾 ⊆ 𝐸. Then [𝐸 ∶ 𝐹] = [𝐸 ∶ 𝐾][𝐾 ∶ 𝐹]. 

Proof. Viewing 𝐸 as a vector space over 𝐾 and 𝐾 a vector space over 𝐹, let 𝑚 ≔ [𝐸 ∶ 𝐾] and 
𝑛 ∶= [𝐾 ∶ 𝐹], and {𝛼1, 𝛼2, ⋯ , 𝛼𝑚} and {𝛽1, 𝛽2,⋯ , 𝛽𝑛} be bases of 𝐸 over 𝐾 and 𝐾 over 𝐹 
respectively. Hence, for any 𝑥 ∈ 𝐸, 

𝑥 =∑𝑎𝑖𝛼𝑖

𝑚

𝑖=1

=∑∑𝑏𝑖,𝑗𝛼𝑖𝛽𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 

where 𝑎𝑖 = ∑ 𝑏𝑖,𝑗𝛽𝑗
𝑛
𝑗=1 ∈ 𝐾 and 𝑏𝑖,𝑗 ∈ 𝐹. Thus 𝑥 is expressed as a linear combination of 𝛼𝑖𝛽𝑗 

where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, so the 𝛼𝑖𝛽𝑗’s span 𝐸. For linear independence, suppose 
that 

0 =∑∑𝑏𝑖,𝑗𝛼𝑖𝛽𝑗

𝑛

𝑗=1

𝑚

𝑖=1

=∑(∑𝑏𝑖,𝑗𝛽𝑗

𝑛

𝑗=1

)𝛼𝑖

𝑚

𝑖=1

 

But since the 𝛼𝑖’s are linearly independent, ∑ 𝑏𝑖,𝑗𝛽𝑗
𝑛
𝑗=1 = 0 for every 𝑖; but the 𝛽𝑗’s are 

linearly independent too, so 𝑏𝑖,𝑗 = 0 for all 𝑖, 𝑗. This means that the 𝛼𝑖𝛽𝑗’s (𝑚𝑛 of them) are 
linearly independent, and form a basis of 𝐸 over 𝐹, thus [𝐸 ∶ 𝐹] = 𝑚𝑛 = [𝐸 ∶ 𝐾][𝐾 ∶ 𝐹]. 
QED. 

Proposition 25. The minimal polynomial of any 𝑧 over a field 𝐹 is unique. 

Proof. Let 𝑓 and 𝑔 be minimal polynomials of 𝑧 over 𝐹. They have the same degree, 
otherwise they are not equal trivially. Define ℎ = 𝑓 − 𝑔, and notice that 𝑧 is a root of ℎ for 
ℎ(𝑧) = 𝑓(𝑧) − 𝑔(𝑧) = 0. But the leading coefficients of both 𝑓 and 𝑔 are 1, so the leading 
terms cancel out, leading to deg ℎ < deg 𝑓 and therefore ℎ(𝑥) = 0 by minimality. This 
means that 𝑓(𝑥) = 𝑔(𝑥), and the minimal polynomial is unique. QED. 

Proposition 26. Let 𝑓 be the minimal polynomial of 𝑧 over a field 𝐹. Then 𝑓 has distinct 
roots. 
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Proof. Suppose for contradiction that 𝑓 has repeated roots. Let 𝑟1, 𝑟2, ⋯ , 𝑟𝑚 be the roots of 
𝑓 listed without repeat, and 𝑛𝑖  the multiplicity of the root 𝑟𝑖. Then 

𝑓(𝑥) = (𝑥 − 𝑟1)
𝑛1(𝑥 − 𝑟2)

𝑛2⋯(𝑥 − 𝑟𝑚)
𝑛𝑚  

Now suppose without loss of generality that 𝑟 ≔ 𝑟1 is a repeated root of 𝑓 with multiplicity 
𝑛 ≔ 𝑛1 ≥ 2. Thus 𝑓(𝑥) = (𝑥 − 𝑟)𝑛𝑔(𝑥), where 𝑔(𝑥) = (𝑥 − 𝑟2)𝑛2(𝑥 − 𝑟3)𝑛3⋯(𝑥 − 𝑟𝑚)𝑛𝑚 ∈
𝐿[𝑥] with deg 𝑔 < deg 𝑓. Thus 

𝑓′(𝑥) = 𝑛(𝑥 − 𝑟)𝑛−1𝑔(𝑥) + (𝑥 − 𝑟)𝑛𝑔′(𝑥) 
∴ 𝑓′(𝑟) = 0 

for 𝑛 − 1 > 0. Hence 𝑟 is also a root of 𝑓′ ∈ 𝐹[𝑥] by closure. But deg 𝑓′ < deg 𝑓 since 𝑓 is 
non-constant, so 𝑓 is not the minimal polynomial of 𝑟 over 𝐹. However, 𝑓 is irreducible over 
𝐹, so it is necessarily the minimal polynomial of 𝑟 over 𝐹, hence contradiction. QED. 
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Appendix C: The Algebraic Expressions of 𝜻𝒏 

C.1: List of 𝒑-th Roots 

Below is a table compiling the list of the amounts of 𝑝-th roots present in the algebraic 
expressions for 𝜁𝑛, 𝑛 ranging from 1 to 100, generated using the method of Section 1.4. 

𝒏 
𝒑-th roots 

𝟐 𝟑 𝟓 𝟕 𝟏𝟏 𝟏𝟑 𝟐𝟑 𝟐𝟗 𝟒𝟏 
1  

 

 

 

 

    

2 
3 1 
4 1 
5 2 
6 1 
7 2 1 
8 2  
9 2 1 
10 2 

 11 3 1 
12 2 

 

13 3 1 
14 2 1 
15 3 

 16 3 
17 4 
18 2 1 
19 2 2 
20 3  
21 3 1 
22 3 

 

1 
23 4 1 1 
24 3  

 

25 4 1 
26 3 1 

 
27 2 2 
28 3 1 
29 4 1 1 
30 3  

 

31 4 1 1 
32 4 

 
 

33 4 1 
34 4  
35 4 1 
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36 3 1 
37 3 2 
38 2 2 
39 4 1 
40 4  
41 5 1 
42 3 1  
43 3 2 1 
44 4  1 

 
45 4 1  
46 4 

 
1 1 

47 5 1 1 1 
48 4  

 

 

49 3 2 1 
50 4  1 

 

51 5 

 52 4 1 
53 5 1 
54 2 2 
55 5  1 
56 4 1 

 
57 3 2 
58 4 1 1 
59 5 1 1 1 
60 4  

 

 

61 5 1 1 
62 4 1 1 
63 3 2 

 64 5  
65 5 1 
66 4  1 
67 5 1 1 1 
68 5    
69 5 1 1 
70 4 1  

 

71 5 1 1 1 
72 4 1 

 

 

73 4 2 
74 3 2 
75 5  1 
76 3 2  
77 5 1 1 
78 4 1  
79 4 2 1 
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80 5  

 

81 2 3 
82 5  1 
83 6 1 1 
84 4 1 

 

 

85 6  
86 3 2 1 
87 5 1 1 
88 5  1 

 

89 6 1 1 
90 4 1   
91 4 2 
92 5  1 1 
93 5 1 1  
94 5  1 1 1 
95 4 2 

 
  

96 5  
97 6 1 
98 3 2 1 
99 5 1 1  
100 5  1 

Table 2: List of Roots Present in the Algebraic Expressions for 𝜁𝑛 

C.2: Python Algorithm 

Below is a block of code written in Python that I used to determine the various entries in 
Table 2 (of course, this also applies to 𝑛 > 100); the last function roots(n) returns the roots 
present in the algebraic expression for 𝜁𝑛. 

from sympy.ntheory import primefactors 

from sympy import factorint 

from math import gcd, prod 

def phi(n): # Euler totient function 

    num = 0 

    for i in range(1, n+1): 

        if gcd(n, i) == 1: 

            num += 1 

    return num 

def adjoin_unity(n): # Finds the roots of unity required in the base field before 

adjunction of zeta_n 

    req = [] 

    for i in primefactors(phi(n)): 

        if i != 2: 

            req.append(i) 

    return req 
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def find_tree(n, lst): # Generates the list of values on each 'red' level (Refer 

to Fig. 1) 

    for i in adjoin_unity(n): 

        if i != 2: 

            lst.append(i) 

            find_tree(i, lst) 

def roots(n): 

    tree = [n] 

    find_tree(n, tree) 

    tree = list(dict.fromkeys(tree)) # Removes redundancy 

    tree = [phi(i) for i in tree] # Convert 'red' numbers into 'blue' 

    return factorint(prod(tree)) 

 


